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Abstract This paper concerns a class of linear-state optimal control problems and nonco-
operative differential games. Deterministic and stochastic systems are considered, as well as
finite- and infinite-horizon problems. We give conditions under which these systems have
degenerate feedback optimal controls so that the optimal control actions a(t, x) ≡ a(t) are
independent of the state variable x. As a consequence, open-loop and feedback (or Markov)
optimal controls coincide, the value (or optimal objective) function is linear in the state x,
and the certainty equivalence principle is satisfied.
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1 Introduction

Identifying optimal control problems and dynamic games with particular classes of optimal
strategies has been an important research topic for many years. Midler [22] was, to the best
of our knowledge, the first to note that a certain class of stochastic discrete-time linear–
state control problems has “degenerate” feedback optimal controls, that is, optimal controls
a(t, x) ≡ a(t) independent of the state variable x, and the value (or optimal reward) function
is linear in the state x. Moreover, the control problem satisfies the certainty equivalence
principle [14,28] so that the optimal control for the associated deterministic problem (with
ξt ≡ 0 in (2) below) is also optimal for the original stochastic problem.
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Onésimo Hernández–Lerma
Departamento de Matemáticas, CINVESTAV–IPN
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More explicitly, Midler [22] considered the following optimal control problem (OCP): max-
imize the expected performance index

J(π, x) := E

[
T∑

t=0

r(t, xt, at)

]
(1)

over all controls π = {at} in the control space A ⊂ Rm given that the state process xt ∈ Rn

evolves according to the stochastic difference equation

xt+1 = F (t, xt, at) + ξt, t = 0, 1, ..., T − 1, (2)

with a given, possibly random, initial condition x0, where the ξt are independent random
vectors. The key feature in Midler’s OCP is that the stage reward r and the system function
F are linear in the state x, i.e.,

r(t, x, a) := ⟨r1(t), x⟩+ r2(t, a), F (t, x, a) := F1(t)x+ F2(t, a), (3)

where ⟨a, b⟩ denotes the inner product of two n–vectors a, b. Then, under mild assumptions
(introduced in Section 2, below), Midler uses the inductive dynamic programming (or value
iteration) algorithm to show that the optimal control law is independent of the state. (This
result is also valid for infinite–horizon problems; see [13], exercise 3.13.)

Similar results were obtained in the 1970s and 1980s for several classes of deterministic
control problems and differential games; see [6,9,17,21,24], among others [15]. Many of these
results were collected by Dockner et al. in [7] (see also Chapter 7 in [8] or section 7.6 in [12])
and classified in several classes, such as, “state redundant”, “state separable”, and so on. The
proof of these properties, however, were mostly indirect, that is, invoking results from other
sources, such as the sufficient conditions in Stalford and Leitmann (1973). This brings us to
our contributions in this paper.

We consider finite- and infinite-horizon, deterministic and stochastic continuous -time
optimal control problems and differential games which are linear-state in the sense of (3) and
give direct proofs that the corresponding optimal controls or Nash equilibria do not depend
on the state variable. As a consequence, the associated value functions are linear in the state.
As far as we can tell, the results for the stochastic differential case are new. Our proofs are
mainly based on standard facts on linear systems. Midler’s [22] inductive proof for discrete-
time systems is not applicable in our context.

The remainder of the paper is organized as follows. Section 2 concerns finite- and infinite-
horizon linear-state deterministic optimal control problems (OCPs). It also includes a sum-
mary of results on linear ordinary differential equations, which are used in several of the
proofs. Section 3 is about linear-state (deterministic) differential games. Sections 4 and 5
extend to stochastic control problems and differential games the results in Sections 2 and
3, respectively. Section 6 presents several examples to illustrate our results and, finally, we
conclude in Section 7 with some general observations on our results.

2 Deterministic optimal control problems: The finite-horizon case

In this section we first consider a finite–horizon optimal control problem (OCP) with dynamics
and running reward function as in (3), i.e.,

ẋ(t) = F1(t)x(t) + F2(t, a(t)), x(0) = x0, (4)
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r(t, x, a) = ⟨r1(t), x⟩+ r2(t, a), (5)

with t ∈ [0, T ], r1 ̸≡ 0 and state and action spaces X ⊂ Rn and A ⊂ Rm, respectively. At the
outset, we consider control functions a(·) in the set A[0, T ] of piecewise continuous functions
a : [0, T ] → A.

The OCP is to maximize the objective function (or performance index)

J(x0, T, a(·)) :=
∫ T

0

r(t, x(t), a(t))dt (6)

over A[0, T ], with r as in (5), subject to (4). In (6), x(t) ≡ x(t;x0, a(·)), t ∈ [0, T ], denotes the
solution of (4). We will use the simpler notation x(·) instead of x(·;x0, a(·)) whenever there
is no risk of confusion.

To ensure that this OCP is well defined we will suppose the following.

Assumption 2.1 Let φ(t, x, a) be any of the functions r and F in (4)-(5).

(a) The function φ is uniformly continuous and there is a constant L such that |φ(t, 0, a)| ≤ L
for all (t, a) in [0, T ]×A.

(b) For each t ∈ [0, T ], there are maximizers of the mappings a 7→ r2(t, a) and a 7→ F2(t, a).

Under the Assumption 2.1(a), φ satisfies a Lipschitz condition in x ∈ X, i.e.,

|φ(t, x, a)− φ(t, x′, a)| ≤ L|x− x′|

Therefore, the OCP (4)–(6) is well defined in the sense that (4) has a unique solution
x(·; s, y, a(·)) for every initial condition (s, y) in [0, T ] × X and a(·) ∈ A[0, T ], and also (6)
is well defined. (See, for instance, Dockner et al. [8], Haurie et al. [12], or Yong and Zhou
[29].) On the other hand, by the continuity in Assumption 2.1(a), sufficient conditions for
Assumption 2.1(b) are well known. For instance, it suffices that A is compact, or that A is
arbitrary but a 7→ r2(t, a) and a 7→ F2(t, a) are sup–compact for each t ∈ [0, T ], that is, for
every α ∈ R, the set {a ∈ A : r2(t, a) ≥ α} is compact for each t ∈ [0, T ], and similarly for
F2.

2.1 Summary of linear ODEs

To state our results we need some facts on linear ODEs.
Let Rn×n be the real linear space of n × n real matrices. Let M : [c, d] → Rn×n be a

piecewise continuous function, and consider the following linear ODE:

ẋ(t) = M(t)x(t) ∀t ∈ [c, d], x(c) = β. (7)

It is well known [18] that equation (7) has a unique solution given by

x(t) = Φ(t, c)β ∀t ∈ [c, d],

where Φ : [c, d] × [c, d] → Rn×n is the transition matrix generated by M, which is given by
the Peano-Baker series

Φ(t, s)=I+

∫ t

s

M(τ1)dτ1+

∞∑
n=2

∫ t

s

M(τ1)

∫ τ1

s

M(τ2) · · ·
∫ τn−1

s

M(τn)dτn · · · dτ2dτ1. (8)

Moreover, Φ satisfies (see [18] page 26) the following.
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Theorem 2.1 For every s < t in [c, d] the transition matrix Φ satisfies that

Φ(t, s) = I +

∫ t

s

M(σ)Φ(σ, s)dσ

and, for every s ∈ [c, d], the function t → Φ(t, s) is piecewise continuously differentiable with
derivative

dΦ(t, s)

dt
= M(t)Φ(t, s) ∀t ∈ [c, d] \ E, (9)

where E ⊂ [c, d] is the set at which M fails to be continuous. Moreover, for every τ < α < t
in [c, d], Φ(τ, τ) = I, Φ(t, α)Φ(α, τ) = Φ(t, τ) and Φ(τ, t) = Φ−1(t, τ).

The following corollaries are perhaps well known but we could not find a reference. There-
fore we give proofs in the Appendix.

Corollary 2.1 For every s < t in [c, d]

dΦ(s, t)

dt
= −Φ(s, t)M(t) ∀t ∈ [c, d] \ E,

with E as in (9).

We denote by M⋆ the transpose of a matrix M.

Corollary 2.2 Let M̂(t) := −M⋆(t) for all t ∈ [c, d]. Then the transition matrix Φ̂ generated
by M̂ is given by

Φ̂(t, s) = Φ⋆(s, t) ∀(t, s) ∈ [c, d]× [c, d]. (10)

Finally, consider the inhomogeneous linear ODE

ẋ(t) = M(t)x(t) + b(t) ∀t ∈ [c, d], x(c) = β, (11)

where b : [c, d] → Rn is a given piecewise continuous function. This equation has the unique
solution

x(t) = Φ(t, c)β +

∫ t

c

Φ(t, α)b(α)dα. (12)

2.2 Back to the finite–horizon case

Definition 2.1 A pair (x̄, ā) : [0, T ] → Rn ×A is said to be an optimal solution of the OCP
(4)− (6) if ā(·) maximizes (6) and x̄(·) is the corresponding solution to (4).

We now state our first main result: It gives necessary conditions for a pair (x̄, ā) to be
an optimal solution to (4)-(6). In particular, ā depends only on the time parameter, which
means that ā is independent of the state variable.

Theorem 2.2 Under Assumption 2.1, if (x̄, ā) : [0, T ] → Rn × A is an optimal solution to
the OCP (4)− (6), then ā(·) depends only on the time parameter t. In fact, for all t ∈ [0, T ],
ā(t) is such that

r2(t, ā(t)) + λ(t)F2(t, ā(t))=max
a∈A

{r2(t, a) + λ(t)F2(t, a)} , (13)
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where λ⋆(·) satisfies equation (19) below. Consequently, the OCP’s value function, defined as

V (x0) := sup
a(·)

J(x0, T, a(·)) ∀x0 ∈ X,

is linear in the initial condition x0, that is, V (x0) = Mx0+N where M and N are constants
depending on r1, r2, F1, F2 and T .

The proof of Theorem 2.2 is given in Section 2.3 below.
Remark 2.1 Recall that (5) requires r1 ̸≡ 0. Otherwise, our result on the linearity of the value
function may not hold. See examples 6.6 and 6.7.

The Hamiltonian for the OCP (4)–(6) is given by

H(s, x, a, λ) = ⟨r1(s), x⟩+ r2(s, a) + λ(F1(s)x+ F2(s, a)), λ ∈ R1×n, (14)

where λ in (14) is a row n−vector.
The following theorem gives sufficient conditions for a control ā(·) satisfying (13) to be

optimal.

Theorem 2.3 Suppose that Assumption 2.1 holds. Let ā ∈ A and λ : [0, T ] → R1×n satisfy
equation (13) and equation (19) below, and suppose the following:

(a) A is a convex set,
(b) H(t, ·, ·, λ(t)) is concave and continuously differentiable for each t, and
(c) ā(t) is an interior point of A for each t.

Then (x̄, ā) is an optimal solution for the OCP (4)− (6).

Theorem 2.3 follows directly from results on “sufficient conditions of optimality”. See, for
instance, Theorem 4.10 in [13] or Theorem 2.5 in [29].

2.3 Proof of Theorem 2.2

Consider the value function

V (x0) := sup
a(·)

{∫ T

0

[⟨r1(t), x(t)⟩+ r2 (t, a(t))] dt

}
. (15)

We take the supremum in (15) over all piecewise continuous functions a(·) in A[0, T ].
By the maximum principle [2,13,29], if (x̄(·), ā(·)) is an optimal solution to the OCP (4)–

(6) with value function (15), then there exists a function λ : [0, T ] → R1×n that satisfies the
so-called adjoint equation {

−λ̇(s) = r1(s) + λ(s)F1(s),

λ(T ) = 0
(16)

and, in addition,

H(s, x̄(s), ā(s), λ(s)) = max
a∈A

H(s, x̄(s), a, λ(s)). (17)

Note that we can write (16) as{
λ̇⋆(s) = −F ⋆

1 (s)λ
⋆(s)−r⋆1(s)

λ⋆(T ) = 0,
(18)
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where M⋆ denote the transpose of a matrix M.
If Φ is the transition matrix generated by F1, then Corollary 2.2 implies that (18) has a

unique solution given by

λ⋆(t) = Φ⋆(0, t)λ⋆(0)−
∫ t

0

Φ⋆(s, t)r⋆1(s)ds ∀t ∈ [0, T ], (19)

with

λ⋆(0) = Φ⋆(T, 0)

(∫ T

0

Φ⋆(s, T )r⋆1(s)ds

)
. (20)

Observe that we can rewrite λ⋆ as

λ⋆(t) =

∫ T

t

Φ⋆(s, t)r⋆1(s)ds ∀t ∈ [0, T ]. (21)

From (14)

max
a

H(t, x̄(t), a, λ(t)) = h(t, x̄(t))+max
a

{r2(t, a)+λ(s)F2(t, a)}

with h(t, x̄(t)) := ⟨r1(t), x̄(t)⟩+λ(t)F1(t)x̄(t). Therefore, if ā(t) ∈ A satisfies (13), i.e.,

r2(t, ā(t)) + λ(t)F2(t, ā(t))=max
a∈A

{r2(t, a) + λ(t)F2(t, a)} , (22)

then (17) holds, i.e.,

H(t, x̄(t), ā(t), λ(t)) = max
a∈A

{H(t, x̄(t), a, λ(t))}

and ā(t) is a function of r2(t, ·), F2(t, ·) and λ(t). This yields the first statement in Theorem
2.2 because, from (21), ā(t) is a function of the time parameter t only.

To complete the proof of the theorem note that, from (4) and (11)-(12), the state dynamics
x̄(·) is given by

x̄(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)F2(s, ā(s))ds ∀t ∈ [0, T ].

whereas, from (15),

V (x0) =

∫ T

0

⟨r1(t), x̄(t)⟩dt+
∫ T

0

r2 (t, ā(t)) dt.

It follows that for all x0 ∈ Rn, V (x0) = Mx0 + N where M = M(F1, r1, T ) and N =
N(F1, r1, F2, r2, T ) are given by

M :=

∫ T

0

r1(t)Φ(t, 0)dt,

and

N :=

∫ T

0

〈
r1(t),

∫ t

0

Φ(t, s)F2(s, ā(s))ds

〉
dt+

∫ T

0

r2 (t, ā(t)) dt,

respectively. ⊓⊔
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2.4 The infinite horizon case

Remark 2.2 As is well known, for infinite-horizon control problems, there are several perfor-
mance criteria: overtaking optimality, weak overtaking optimality, and so on. (For definitions,
see Haurie et al. [12], Carlson et al. [5], Dockner et al. [8]). It turns out that the results for our
linear-state control problems are valid for all of these criteria, and the corresponding proofs—
based on the maximum principle—are all quite similar. Hence, to avoid being repetitious, we
will only consider the discounted case which is the optimality criterion most widely studied
in the literature.

We now consider an infinite–horizon OCP with dynamics and running reward given by

ẋ(t) = F1(t)x(t) + F2(t, a(t)), x(0) = x0, (23)

r(t, x, a) = e−αt (⟨r1(t), x⟩+ r2(t, a)) , (24)

with t ∈ [0,∞), r1 ̸≡ 0, and state and action spaces X ⊂ Rn and A ⊂ Rm, respectively.
We consider piecewise–continuous control functions a(·) in the set

A∞ :=

{
a : [0,∞) → A :

∫ ∞

0

r(t, x(t), a(t))dt < ∞
}

(25)

As in the proof of Theorem 2.2, we wish to use again a maximum principle. In the infinite-
horizon case, however, we need to choose a suitable maximum principle. To this end, the
following Assumption 2.2 is designed to use Tauchnitz [27] results.

Assumption 2.2 Let φ(t, x, a) be any of the functions r and F in (23)− (24).

(a) The function φ is uniformly continuous and there is a constant L such that |φ(t, 0, a)| ≤ L
for all (t, a) in [0,∞)×A.

(b) For each t ∈ [0,∞), there are maximizers of the mappings a 7→ r2(t, a) and a 7→ F2(t, a).
(c) α in (24) satisfies 0 < L < α.

Lemma 2.1 Under Assumption 2.2, the transition matrix Φ generated by F1 satisfies

|Φ(t, s)| ≤ eL(t−s) ∀ 0 < s < t.

Proof Note that for all n ≥ 2∣∣∣∣∫ t

s

F1(τ1)

∫ τ1

s

F1(τ2) · · ·
∫ τn−1

s

F1(τn)dτn · · · dτ2dτ1
∣∣∣∣

≤ Ln

∫ t

s

∫ τ1

s

· · ·
∫ τn−1

s

dτn · · · dτ2dτ1 = Ln (t−s)n

n!
.

Hence, by the Peano-Baker series of Φ (see equation (8)), we get

|Φ(t, s)| ≤
∞∑

n=0

Ln (t−s)n

n!
= eL(t−s)

for all 0 < s < t. ⊓⊔
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Lemma 2.2 Suppose that Assumption 2.2 holds. Take a(·) ∈ A∞ and let x(·) be the corre-
sponding trajectory. Then, x(·) satisfies

|x(t)| < eLt(x0+1) ∀t > 0,

and, for all ρ > 2L, ∫ ∞

0

e−ρt|x(t)|2dt < ∞.

Proof From (23) and the variation of parameters formula (12), for all t > 0,

x(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)F2(s, a(s))ds.

Therefore, Lemma 2.1 and Assumption 2.2 imply

|x(t)| ≤ eLtx0 +

∫ t

0

eL(t−s)Lds = eLtx0 + eLt − 1

for all t > 0, and the result follows. ⊓⊔

Lemma 2.3 Suppose that Assumption 2.2 holds. Let x̄(·), x(·) be trajectories generated by
a(·) ∈ A∞ with different initial conditions, x̄(0) ̸= x(0). Then, x(·) and x̄(·) satisfy for all
t > 0

|x(t)− x̄(t)| ≤ eLt|x̄(0)− x(0)|.

Proof From (23) and the variation of parameters formula (12), for all t > 0,

x(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)F2(s, a(s))ds

and

x̄(t) = Φ(t, 0)x̄0 +

∫ t

0

Φ(t, s)F2(s, a(s))ds.

The result follows from Lemma 2.1. ⊓⊔
Under Assumption 2.2, Lemmas 2.2-2.3 imply that Assumptions (A1), (A2) and (A3) in

[27] are satisfied by the OCP (23)-(24). Therefore, Theorem 6.1 in [27] holds with v(t) = e−tρ

and 2L < ρ < 2α, and we obtain the following result.

Theorem 2.4 Under Assumption 2.2, if (x̄, ā) is an optimal solution for the OCP (23)-(24),
then ā(·) depends only on the time parameter t. In fact, for all t ∈ [0,∞), ā(t) is such that

e−αtr2(t, ā(t)) + λ(t)F2(t, ā(t))=max
a∈A

{
e−αtr2(t, a) + λ(t)F2(t, a)

}
, (26)

where λ(·) satisfies

λ⋆(t) =

∫ ∞

t

Φ⋆(s, t)r⋆1(s)ds ∀t ∈ [0,∞), (27)

and Φ is the transition matrix generated by F1. Consequently, with J as in (6), the OCP’s
value function, defined as

V (x0) := sup
a(·)

J(x0,∞, a(·)) ∀x0 ∈ X,

is linear in the initial condition x0, that is, V (x0) = Mx0+N where M and N are constants
depending on r1, r2, F1, F2.



Linear–state control problems and differential games: Deterministic and stochastic systems 9

3 Differential games

Let N := {1, . . . , k}, k ≥ 2, be the set of players. For each player i ∈ N, the set of feasible
controls is Ai ⊂ Rmi . Let the state space be X = Rn and

A := A1 × · · · ×Ak ⊂ Rm,

with m := m1 + · · ·+mk.

For each i ∈ N , let A−i := A1 × · · · ×Ai−1 ×Ai+1 × · · · ×Ak. If

ā := (ā1, . . . , āi−1, āi, āi+1, . . . , āk)

then for all ai ∈ Ai we define

(ai, ā−i) := (ā1, . . . , āi−1, ai, āi+1, . . . , āk) .

In particular, ā = (āi, ā−i).

For each player i ∈ N the strategy space Ai is the set of piecewise continuous functions
ai : [0, T ] → Ai. Let A := A1 × · · · × An be the multistrategies space.

Each player i ∈ N has the objective or payoff function

Ji (x0,a, T ) =

∫ T

0

⟨r1,i(t), x(t)⟩+ r2,i (t,a(t)) dt, (28)

with a in A and r1,i ̸≡ 0, and subject to the dynamics

ẋ (t) = F1(t)x (t) + F2 (t,a(t)) , x(0) = x0 ∈ Rn. (29)

For notational ease, and if there no risk of confusion, we will write the solution x(·;x0,a) of
(29) simply as x(·).

Definition 3.1 A Nash equilibrium for the differential game (28) − (29) is a multistrategy
ā(·) ∈ A that satisfies, for each player i ∈ N ,

Ji (x0, (ai, ā−i), T ) ≤ Ji (x0, ā, T ) ∀ai ∈ Ai,

where

(ai, ā−i) := (ā1, . . . , āi−1,ai, āi+1, . . . , āk) .

We will show below that every Nash equilibrium for the differential game (28)-(29), say
ā(·), depends only on the time parameter t and, moreover, for every t, ā(t) is a Nash equilib-
rium for the static game (37).

Remark 3.1 To avoid being repetitious, we will only study the finite-horizon case.
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3.1 The finite-horizon case

The following theorem gives necessary conditions for ā(·) to be a Nash equilibrium for (28)-
(29).

Theorem 3.1 Suppose that F1, F2 and all rj,i in (28)− (29) satisfy Assumption 2.1. If ā(·)
is a Nash equilibrium for (28)− (29), then ā(·) depends only on the time parameter t and, for
every t ∈ [0, T ], ā(t) is a Nash equilibrium for the static game (37) below. Consequently, for
each player i ∈ N, the corresponding payoff function is linear in the initial condition x0 :

Ji (x0, ā, T ) = Mix0 +Ni ∀x0 ∈ X,

where Mi and Ni are functions of F1, F2, r1,i, r2,i and T.

The next theorem states how to obtain a Nash equilibrium for (28)− (29).

Theorem 3.2 Suppose that F1, F2 and all rj,i in (28) − (29) satisfy Assumption 2.1. Let
ā(·) ∈ A be such that, for each i ∈ N, there exists a row vector λi : [0, T ] → R1×n given by
(35), and, moreover, for every t ∈ [0, T ], ā(t) is a Nash equilibrium for the static game (37).
Also, suppose that, for each i ∈ N,

(a) Ai is a convex set,
(b) Hi

(
t, ·, (·, ā−i(t)), λ

i(t)
)
given by equation (31) is concave in Rn × Ai and continuously

differentiable for each t, and
(c) āi(t) is in the interior of Ai for each t.

Then ā(·) is a Nash equilibrium for (28)− (29).

Theorem 3.2 follows from Theorem 2.3 and the proof of Theorem 3.1 in Section 3.2.

3.2 Proof of Theorem 3.1

Let ā : [0, T ] → A be a Nash equilibrium for (28)-(29) and let x̄ be the trajectory generated
by ā(·). Then for each i ∈ N, (x̄(·), āi(·)) is an optimal solution for an OCP of the form (4)-(6)
with {

ẋ (t) = F1(t)x (t) + F2 (t, (ai(t), ā−i(t))) ,

ri (t, x, ai) = ⟨r1,i(t), x⟩+ r2,i (t, (ai, ā−i(t))) .
(30)

We define, for each player i,

Hi
(
s, x, (ai, ā−i(s)), λ

i
)
:= ⟨r1,i(s), x⟩+ λiF1(t)x+Gi(s, (ai, ā−i(s)), λ

i), (31)

Gi(s, (ai, ā−i(s)), λ
i) := r2,i (s, (ai, ā−i(s))) + λiF2 (s, (ai, ā−i(s))) . (32)

The maximum principle (see [2,8,12,13,29]) implies the existence of a function λi : [0, T ] →
R1×n that satisfies {

λ̇i(s) = −Hi
x

(
s, x̄(s), (āi(s), ā−i(s)), λ

i(s)
)

λi(T ) = 0.
(33)

and, for all s ∈ [0, T ],

Hi
(
s, x̄(s), (āi(s), ā−i(s)), λ

i(s)
)
= max

ai∈Ai

Hi
(
s, x̄(s), (ai, ā−i(s)), λ

i(s)
)
. (34)
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From (31)-(32) we can write (33) as{
λ̇i(s) = −λi(s)F1(s)−r1,i(s),

λi(T ) = 0,
(35)

which means that λi⋆(·) satisfies equations (19)-(20) in Section 2.3 with r1,i instead of r1.
Furthermore, from (31)-(32),

Hi
(
s, x̄(s), (āi(s), ā−i(s)), λ

i(s)
)
= ⟨r1,i(s), x⟩+ λiF1(s)x̄(s)
+ Gi(s, (āi(s), ā−i(s)), λ

i(s)).

Therefore, for all s ∈ [0, T ], āi(s) satisfies (34) if and only if

Gi(s, (āi(s), ā−i(s)), λ
i(s)) = max

ai∈Ai

Gi(s, (ai, ā−i(s)), λ
i(s)). (36)

Since for each player i ∈ N, āi(·) satisfies (36), then for each s ∈ [0, T ], ā(s) is a Nash
equilibrium for the static game

G(s) :=
(
N, {Ai, i ∈ N} ,

{
Gi(s, ·, λi(s)), i ∈ N

})
. (37)

Note that for each s ∈ [0, T ], the static game G(s) depends only on r2,i(s, ·), λi(s), for all
i ∈ N, and F2(s, ·). Since each λi(·) is just a function of time, we obtain that the Nash
equilibrium ā(·) depends only on the time parameter t. ⊓⊔

Remark 3.2 In general, finding Nash equilibria for a differential game can be a difficult task
because we need to deal with coupled OCPs. The so-called Potential Differential Games
(PDG)(see [10]) are differential games that can be associated with an OCP in such a way
that every solution of the OCP is a Nash equilibrium for the differential game. For instance,
consider a finite-horizon differential game with k players, dynamics, and running reward given
by: {

ẋ (t) = F1(t)x (t) + F2 (t,a(t)) ,

ri (t, x, a) = ⟨r1(t), x⟩+ ⟨αi(t), ai⟩,
(38)

where each αi : [0, T ] → Rmi is a piecewise continuous function. From Theorem 2 in [10](page
262), (38) is a PDG with associated OCP given by{

ẋ (t) = F1(t)x (t) + F2 (t,a(t)) ,

r (t, x, a) = ⟨r1(t), x⟩+
∑k

i=1⟨αi(t), ai⟩.
(39)

Therefore, from Theorems 2.2 and 2.3 above, by studying the expression

max
a∈A

{λ(t)F2(t, a) +

k∑
i=1

⟨αi(t), ai⟩},

we can find Nash equilibria for the game (38).
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4 Stochastic optimal control problems

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space and let

W(t) = (W1(t), . . . ,Wd(t)) t ≥ 0

be a d−dimensional {Ft}t≥0 Brownian motion. We assume that {Ft}t≥0 is the natural filtra-
tion of W, and F0 includes all P−null sets of F .

Consider the following stochastic OCP with dynamics and reward function given by

dx (t) = l(t, x(t), a(t))dt+ σ(t, x(t))dW(t), x(0) = x0 ∈ Rn (40)

r (t, x, a) = ⟨r1(t), x⟩+ r2 (t, a) (41)

where r1, r2 satisfy Assumption 2.1 (with r1 ̸≡ 0) and σ : [0, T ] × Rn → Rn×d and l :
[0, T ]× Rn × Rm → Rn are given by

l(t, x, a) = F1(t)x+ F2 (t, a) , (42)

and σ is the n× d matrix with columns Bi(t)x+ bi(t) i = 1, . . . , d, that is,

σ(t, x) = (B1(t)x+ b1(t)| · · · |Bd(t)x+ bd(t)) (43)

Note that (40) can be written as

dx (t) = l(t, x(t), a(t))dt+

d∑
i=1

[Bi(t)x(t) + bi(t)] dWi(t).

The stochastic OCP is to maximize the objective function

J (x0, T, a(·)) = E

[∫ T

0

[⟨r1(t), x(t)⟩+ r2 (t, a(t))] dt

]
(44)

over all {Ft}− adapted processes a : [0, T ] → A with piecewise continuous trajectories; we
denote this set of controls as A. To ensure that this OCP is well defined we will suppose the
following.

Assumption 4.1 The functions l and σ are measurable and satisfy:

(a) Linear growth: For every T > 0, there is a constant K = K(T ) such that, for all 0 ≤ t ≤ T
and x ∈ Rn,

∥l(t, x, a)∥ ≤ K (1 + ∥x∥) ∥σ(t, x)∥ ≤ K (1 + ∥x∥) ,

where ∥σ(t, x)∥ = (tr (σ(t, x)σ(t, x)⋆))
1
2 and tr(D) denotes the trace of a square matrix D.

(b) Lipschitz conditions: l and σ satisfy (a) in Assumption 2.1.

The following theorem is a stochastic analogue of Theorem 2.2. That is, it gives conditions
under which an optimal control of the problem (40)-(44) does not depend on the state process;
it only depends on the time parameter.
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Theorem 4.1 Under Assumption 4.1, if (x̄(·), ā(·)) is an optimal solution to the OCP (40)−(44),
then P−a.s. ā(·) depends only on the time parameter t. In fact, for all t ∈ [0, T ], ā(t) satisfies
P − a.s.

r2(t, ā(t)) + ⟨p̄(t), F2(t, ā(t))⟩ = max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩}.

where p̄(·) satisfies the stochastic equation (52) below. Consequently, the OCP’s value function,
defined as

V (x0) := sup
a(·)∈A

J (x0, T, a(·)) ∀x0 ∈ X,

is linear in the initial condition x0, that is, V (x0) = Mx0+N where M and N are constants
depending on l, σ, r1, r2 and T.

Proof The Hamiltonian for this OCP is given [5,12,29] by

H(t, x, a, p, q) = ⟨p, F1(t)x+F2 (t, a)⟩+tr [q⋆(σ(t, x))] +⟨r1(t), x⟩+r2(t, a). (45)

Note that the diffusion coefficient σ in equation (40) does not depend on the control process
a(·) (see equation (43)). As noted in [29] (see Case 1 in page 119), if {(x̄(t), ā(t))}t≥0 is a
solution for the stochastic OCP (40)−(44), then for almost every t ∈ [0, T ]

H(t, x̄(t), ā(t), p̄(t), q̄(t)) = max
a∈A

H(t, x̄(t), a, p̄(t), q̄(t)) P − a.s. (46)

where (p̄(·), q̄(·)) is the unique solution to the following backward stochastic differential equa-
tion (SDE) (see Theorem 2.2 in [29] page 349)

dp̄⋆(t) = −

F ⋆
1 (t)p̄

⋆(t) +

d∑
j=1

B⋆
j (t)q̄j(t) + r⋆1(t)

 dt+ q̄(t)dW(t), (47)

with p̄(T ) = 0 (here p̄(t) ∈ R1×n is a row vector and q̄(t) = (q̄1(t)| · · · |q̄d(t)) ∈ Rn×d where
each q̄j(t) ∈ Rn is a column vector).

Following the proof of Theorem 2.2 in [29] (page 351) p̄(·) is given by

∀t ∈ [0, T ], p̄⋆(t) = ∆−1(t)

(
−
∫ t

0

∆(s)r⋆1(s)ds+ E [ΘT |Ft]

)
P − a.s. (48)

where

ΘT =

∫ T

0

∆(s)r⋆1(s)ds, (49)

and ∆(·) satisfies the following SDE

d∆(t) = ∆(t)F ⋆
1 (t)dt+

d∑
j=1

∆(t)B⋆
j (t)dWj(t), ∆(0) = I. (50)

Equations (48)-(50) imply that for all t ∈ [0, T ],

p̄⋆(t) = E

[∫ T

t

∆−1(t)∆(s)r⋆1(s)ds|Ft

]
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Let Ψ(·) be the solution of the fundamental equation

dΨ(t) = F1(t)Ψ(t)dt+

d∑
j=1

Bj(t)Ψ(t)dWj(t), Ψ(0) = I. (51)

Note that for all t ∈ [0, T ], Ψ(t) = ∆⋆(t) (see equation (50)). This means that we can write p̄
as

∀t ∈ [0, T ], p̄(t) = E

[∫ T

t

r1(s)Ψ(s)Ψ
−1(t)ds|Ft

]
P − a.s. (52)

From (51)-(52) for all t ∈ [0, T ], p̄(t) does not depend on the state process x̄(t). Moreover,
since

max
a∈A

H(t, x̄(t), a, p̄(t), q̄(t)) = h(t, x̄(t)) + max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩}

with
h(t, x̄(t)) := ⟨p̄(t), F1(t)x̄(t)⟩+tr [q̄⋆(t)σ(t, x̄(t))] +⟨r1(t), x̄(t)⟩,

it follows that for all t ∈ [0, T ], ā(t) satisfies P − a.s.

r2(t, ā(t)) + ⟨p̄(t), F2(t, ā(t)) = max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩}. (53)

Thus ā(t) depends only on t.
Finally, to prove the linearity of V (·), note that from Theorem 8.5.2 in [1](page 141),

x̄ : [0, T ]×Ω → Rn can be written as

x̄(t) = Ψ(t)x0 + Ψ(t)

∫ t

0

Ψ−1(s)dȲ (s) (54)

where

dȲ (t) =

F2(t, ā(t))−
d∑

j=1

Bj(t)bj(t)

 dt+

d∑
j=1

bj(t)dWj(t). (55)

Since

V (x0) = E

[∫ T

0

[⟨r1(t), x̄(t)⟩+ r2(t, ā(t))]dt

]
,

it follows that
V (x0) = Mx0 +N

with

M = M(F1, r1, B1, . . . , Bd, T ) := E

[∫ T

0

r1(t)Ψ(t)dt

]
and

N = N(F1, r1, F2, r2, σ, T )

:= E

[∫ T

0

〈
r1(t), Ψ(t)

∫ t

0

Ψ−1(s)dȲ (s)

〉
dt+

∫ T

0

r2(t, ā(t))dt

]
.

The proof is complete. ⊓⊔
The following Theorem 4.2 is Theorem 5.2 in [29] (page 138) restated for the OCP (40)-

(41). As in the proof of Theorem 4.1, it is important to note that the diffusion coefficient in
equation (40) does not depend on the control process a(·) (see equation (43)). Therefore, if
(a) and (b) in Theorem 4.2 below hold, then it suffices that ā ∈ A satisfies equation (53) for
it to be an optimal solution of (40)-(41) (see Case 1 in [29], page 119).
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Theorem 4.2 Suppose that Assumption 4.1 holds. Let (p̄(·), q̄(·)) be a solution of equation
(47), and suppose the following:

(a) A is a convex set,
(b) H(t, ·, ·, p̄(t), q̄(t)) given by (45) is concave for all t ∈ [0, T ].

If ā(·) ∈ A satisfies (53) P − a.s., then ā(·) is an optimal control for the OCP (40) − (44),
and ā(·) depends only on the time parameter t.

4.1 The infinite-horizon case

In the finite-horizon case, we showed that the adjoint equations and the maximum condition
of the maximum principle can be expressed as in (47) and (53), respectively. This immediately
implies that the optimal control is a function of the time parameter only.

For the infinite-horizon case, there exist a maximum principle with similar adjoint equa-
tions and maximum condition to those in the finite-horizon case (see equations (3),(4), (17)
and Theorem 4.1 in [11]). In fact, due to the class of problems we are considering (there are
no jumps in the dynamics of the system), equations (4) and (17) in [11] can be written as
equations (47) and (53), respectively; that is

dp̄⋆(t) = −

F ⋆
1 (t)p̄(t) +

d∑
j=1

B⋆
j (t)q̄j(t) + r⋆1(t)

dt+ q̄(t)dW(t), (56)

for all t ∈ [0,∞], and

r2(t, ā(t)) + ⟨p̄(t), F2(t, ā(t))⟩ = max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩}.

Definition 4.1 Given α ∈ R and k ∈ N, we denote by M2,α
Ft

([0,∞);Rk) the space of all

Ft−progressively measurable processes z(·) with values in Rk such that

E

[∫ ∞

0

|z(t)|2eαtdt
]
< ∞.

To verify the existence and uniqueness of the solution of equation (56) we need the fol-
lowing assumption

Assumption 4.2 (a) There exists C0 > 0 such that for all t ≥ 0, |F1(t)| ≤ C0.
(b) There exists C > 0 such that

|
d∑

j=1

Bj(t)(q
1
j − q2j )| ≤ C||q1 − q2|| ∀t > 0, ∀q1, q2 ∈ Rn×d,

where ||q|| = (tr(qq⋆))
1
2 .

(c) r1 ∈ M2,κ
Ft

([0,∞);Rn) (r1 ̸≡ 0) where κ satisfies

κ > 2C0 + 2C2 + δ

for some δ > 0.
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Remark 4.1 Assumption 4.2 is the standard hypothesis that we need in order to obtain the
existence and uniqueness of the SDE (56); see for instance hypothesis H4 in [23] or Section 3
in [11].

Lemma 4.1 Under Assumption 4.2, the backward SDE (56) has a unique solution (p̄(·), q̄(·))
in M2,κ

Ft
([0,∞);Rn × Rn×d). Moreover,

lim
T→∞

E

[∫ ∞

0

|p̄(t)− p̄T (t)|2eκtdt
]
= 0

where

p̄T (t) =

{
E
[∫ T

t
r1(s)Ψ(s)Ψ

−1(t)ds|Ft

]
t ∈ [0, T ],

0 t > T,

and Ψ(·) is the solution of the fundamental equation (51).

Proof The existence and uniqueness of a solution of (56) follows from Theorem 4 in [23]
because Assumption 4.2 implies hypothesis H4 in [23] (just take G in H4 as G(t, p, q) =

F ⋆
1 (t)p+

∑d
j=1 B

⋆
j (t)qj , see page 79 in [23]).

Furthermore, from the proof of Theorem 4 in [23],

lim
T→∞

(p̄T (·), q̄T (·)) = (p̄(·), q̄(·))

where convergence is understood in the sense of M2,κ
Ft

([0,∞);Rn×Rn×d), and for each T > 0,
(p̄T (·), q̄T (·)) is the unique solution of the infinite-horizon backward SDE

d(I[0,T ](t)p̄
⋆(t)) = −

I[0,T ](t)

F ⋆
1 (t)p̄

⋆(t) +

d∑
j=1

B⋆
j (t)q̄j(t) + r⋆1(t)

dt

+(I[0,T ](t)q̄(t))dW(t), t ≥ 0.

Here I[0,T ](·) is the characteristic (or indicator) function of the time interval [0, T ].
It follows that p̄T (·) coincides, in the time interval [0, T ], with the solution of equation

(47) (see equation (48)). ⊓⊔
We consider piecewise–continuous and Ft−progressively measurable control processes a(·)

in the set

A∞ :=

{
a : [0,∞) → A : E

[∫ ∞

0

r(t, x(t), a(t))dt

]
< ∞

}
. (57)

Lemma 4.2 Given ā, a ∈ A∞, let x̄, x be, respectively, the corresponding dynamics given by
equation (40)(with T = ∞). Then

x̄(t)− x(t) =

∫ t

0

Ψ(t)Ψ−1(s)(F2(s, ā(s))− F2(s, a(s)))ds ∀t > 0

where Ψ(t) is the solution of the fundamental equation (51).

Proof See equations (54)-(55). ⊓⊔

Assumption 4.3 Given ā, a ∈ A∞, let x̄, x be as in Lemma 4.2. Let (p̄(·), q̄(·)) be the solution
of the backward SDE (56). The following holds:
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(i) For all T > 0,

E

[∫ T

0

(∫ t

0

Ψ(t)Ψ−1(s)(F2(s, ā(s))− F2(s, a(s))ds

)⋆

× (q̄(t)q̄⋆(t))

×
(∫ t

0

Ψ(t)Ψ−1(s)(F2(s, ā(s))− F2(s, a(s)))ds

)
dt

]
< ∞

and

E

[∫ T

0

p̄(t) (σ(t, x(t))σ(t, x(t))⋆) p⋆(t)dt

]
< ∞,

where σ is given by equation (43).
(ii) F2(t, a) and r2(t, a) are differentiable in a, and

E

[∣∣∣∣ ∂∂aF2(t, ā(t)) +
∂

∂a
r2(t, ā(t))

∣∣∣∣2
]
< ∞;

(iii) The Hamiltonian H in equation (45) satisfies

E

[∫ ∞

0

|H(t, x̄(t), ā(t), p̄(t), q̄(t)|dt
]
< ∞.

It follows from Theorem 4.1 in [11] and Lemmas 4.1 and 4.2 that Theorem 4.2 above has
the following analogue for the infinite-horizon case.

Theorem 4.3 Suppose that the hypotheses in Theorem 4.2 hold in the time interval [0,∞).
Also, assume that the Assumptions 4.2 and 4.3 hold. If ā(·) ∈ A∞ satisfies for all t > 0

r2(t, ā(t)) + ⟨p̄(t), F2(t, ā(t))⟩ = max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩} P − a.s.

and the transversality condition

0 ≤ E

[
lim sup
t→∞

p̄(t)×
(∫ t

0

Ψ(t)Ψ−1(s)× (F2(s, a(s))ds− F2(s, ā(s))ds

)]
< ∞,

then ā(·) is an optimal control for the OCP (40)−(41), and ā(·) depends on the time parameter
t only.

4.2 The Certainty Equivalence Principle

The following paragraph, borrowed from [14], summarizes Theil’s [28] idea behind the cer-
tainty equivalence principle.

“ According to Theil [28], certainty equivalence means that a decision agent who maximizes
expected utility and takes actions based on the information available at the time of taking
the decision, may neglect the disturbances and to suppose that the uncertain elements are
settled at their mean values.”

In this section we show how Theil’s idea holds for the stochastic OCP (40)-(44). (Similar
arguments hold for infinite-horizon problems and stochastic games). To this end, recall that
the optimal control ā(·) satisfies, for all t ∈ [0, T ], the maximality condition

r2(t, ā(t)) + ⟨p̄(t), F2(t, ā(t)) = max
a∈A

{r2(t, a) + ⟨p̄(t), F2(t, a)⟩} P − a.s.
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where p̄(·) is given by

∀t ∈ [0, T ], p̄(t) = E

[∫ T

t

r1(s)Ψ(s)Ψ
−1(t)ds|Ft

]
P − a.s.

By Remark 4.5 in [4] (see page 96), p̄(·) can be written as

∀t ∈ [0, T ], p̄(t) =

∫ T

t

r1(s)E
[
Ψ(s)Ψ−1(t)|Ft

]
ds P − a.s.

The following proposition relates Ψ and Φ, where Φ is the transition matrix in Section 2.3.

Proposition 4.1 Let 0 ≤ t ≤ s ≤ T and let Z be Ft−measurable and bounded random
variable in Rn. Then

E
[
Ψ(s)Ψ−1(t)Z

]
= Φ(s, t)E[Z], (58)

where s → Φ(s, t) is the unique solution of the linear ODE

∀s ∈ [t, T ],
d

ds
Φ(s, t) = F1(s)Φ(s, t), Φ(t, t) = I.

Proof. By (51),

Ψ(s) = I +

∫ s

0

F1(τ)Ψ(τ)dτ +
d∑

j=1

∫ s

0

Bj(τ)Ψ(τ)dWj(τ)

and so

Ψ(s) = Ψ(t) +

∫ s

t

F1(τ)Ψ(τ)dτ +

d∑
j=1

∫ s

t

Bj(τ)Ψ(τ)dWj(τ).

Since Ψ−1(t) and Z are Ft−measurable (see [4] page 204) we obtain

Ψ(s)Ψ−1(t)Z = Z +

∫ s

t

F1(τ)Ψ(τ)Ψ
−1(t)Zdτ +

d∑
j=1

∫ s

t

Bj(τ)Ψ(τ)Ψ
−1(t)ZdWj(τ).

Moreover, since Z is bounded, Remark 9.2 in [4](see page 264) implies

E
[
Ψ(s)Ψ−1(t)Z

]
= E [Z] +

∫ s

t

F1(τ)E
[
Ψ(τ)Ψ−1(t)Z

]
dτ

The result follows from the last equation. ⊓⊔
Corollary 4.1

E
[
Ψ(s)Ψ−1(t)|Ft

]
= Φ(s, t) ∀0 ≤ t ≤ s ≤ T, (59)

and
p̄(t) = λ(t) ∀t ∈ [0, T ], (60)

where λ(·) is the costate function in the deterministic case (see Section 2).

To conclude, from (58)-(60) and Theorem 4.1 we obtain the certainty equivalence
principle in the following Theorem 4.4, because the stochastic process p̄(·) in Theorem 4.1 is
replaced by the deterministic function λ(·) in (19)-(21).

Theorem 4.4 Under Assumption 4.1, if (x̄(·), ā(·)) is an optimal solution to the OCP (40)−(44),
then P−a.s. ā(·) depends only on the time parameter t. In fact, for all t ∈ [0, T ], ā(t) satisfies
P − a.s.

r2(t, ā(t)) + ⟨λ(t), F2(t, ā(t))⟩ = max
a∈A

{r2(t, a) + ⟨λ(t), F2(t, a)⟩}.

where λ(·) is as in Section 2.
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5 Stochastic differential games

Let N := {1, . . . , k}, k ≥ 2, Ai ⊂ Rmi , X = Rn and

A := A1 × · · · ×Ak ⊂ Rm

with m := m1 + · · · + mk, be as in Section 3. Moreover, we again write, for each i ∈ N,
A−i := A1 × · · · ×Ai−1 ×Ai+1 × · · · ×Ak.

In addition, as in Section 4, let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space
and {W(t) a d−dimensional {Ft}t≥0 Brownian motion.

For each player i ∈ N , the strategy space Ai is the set of {Ft}t≥0−adapted processes
ai : [0, T ] × Ω → Ai with piecewise-continuous trajectories. Let A := A1 × · · · × An be the
multistrategies space.

For each player i ∈ N, the objective function is

Ji (x0,a, T ) = E

[∫ T

0

⟨r1,i(t), x(t)⟩+ r2,i (t,a(t)) dt

]
(61)

for a ∈ A, r1,i ̸≡ 0, and subject to the dynamics

dx (t) = l(t, x(t),a(t))dt+ σ(t, x(t))dW(t), with x(0) = x0 ∈ Rn, (62)

with coefficients
l(t, x,a) = F1(t)x+ F2 (t,a) (63)

and
σ(t, x) = (B1(t)x+ b1(t)| · · · |Bd(t)x+ bd(t)) . (64)

Definition 5.1 A Nash equilibrium for the stochastic differential game (61)-(62) is a multi-
strategy ā(·) ∈ A that satisfies for each player i ∈ N

Ji (x0, (ai, ā−i), T ) ≤ Ji (x0, ā, T ) ∀ai ∈ Ai,

where
(ai, ā−i) := (ā1, . . . , āi−1,ai, āi+1, . . . , āk) .

Remark 5.1 As in Section 3, we will only study the finite-horizon case.

5.1 The finite-horizon case

Due to the similarities between Theorems 2.2-2.3 and Theorems 4.1-4.2 (for deterministic
and stochastic OCPs, respectively), we can expect that Theorems 3.1-3.2 will have their
corresponding stochastic analogues. Indeed, in this case we have the following.

Theorem 5.1 Suppose that l and σ satisfy Assumption 4.1, and all rj,i in (61) satisfy As-
sumption 2.1. If ā(·) is a Nash equilibrium for (61)− (62), then ā(·) depends only on the time
parameter t and, for every t ∈ [0, T ], ā(t) is a Nash equilibrium for the static game (72) below.
Consequently, for each player i ∈ N

Ji (x0, ā, T ) = Mix0 +Ni

where Mi and Ni are functions of l, σ, r1,i, r2,i and T.
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We now have the analog of Theorem 3.2 on how to obtain a Nash equilibrium for (61)−(62).

Theorem 5.2 Suppose that l and σ satisfy Assumption 4.1, and all rj,i in (61) satisfy As-
sumption 2.1. Let ā(·) ∈ A be such that there exists, for each i ∈ N, p̄i(·) given by (70), and,
futhermore, for each t ∈ [0, T ], ā(t) is a Nash equilibrium for the static game (72) below.
Moreover, suppose that, for each i ∈ N,

(a) Ai is a convex set,
(b) Hi

(
t, ·, (·, ā−i(t)), p̄

i(t), q̄i(t)
)
in equation (66) is concave in Rn ×Ai for all t ∈ [0, T ].

Then ā(·) is a Nash equilibrium for (61)−(62).

Theorem 5.2 follows from Theorem 4.2 and the proof of Theorem 5.1.

5.2 Proof of Theorem 5.1

Let ā ∈ A be a Nash Equilibrium for (61)-(62) and let x̄ be the state process generated by
ā(·). Then for each i ∈ N, (x̄(·), āi(·)) is an optimal solution for the stochastic OCP with
state dynamics and running payoff{

dx (t) = l(t, x(t), (āi(t), ā−i(t)))dt+ σ(t, x(t))dW(t),

ri (t, x, ai) = ⟨r1,i(t), x⟩+ r2,i (t, (ai, ā−i(t))) ,
(65)

respectively. Consider the Hamiltonian for player i given by

Hi(t, x, (ai, a−i), p, q) := ⟨r1,i(t), x⟩+ ⟨p, F1(t)x⟩+ tr [q⋆(σ(t, x))]
+ Gi

H(t, (ai, a−i), p)
(66)

with
Gi

H(t, (ai, a−i), p) := r2,i(t, (ai, a−i)) + ⟨p, F2 (t, (ai, a−i))⟩. (67)

The maximum principle (see [29] page 118) implies the existence of an {Ft}− adapted
process (p̄i(·), q̄i(·)) which is the unique solution for the following backward SDE (see Theorem
2.2 in [29] page 349)

dp̄i⋆(t) = −

F ⋆
1 (t)p̄

i⋆(t) +

d∑
j=1

B⋆
j (t)q̄

i
j(t) + r⋆1,i(t)

dt+ q̄i(t)dW(t), (68)

with p̄i(T ) = 0, and for all t ∈ [0, T ],

Hi
(
t, x̄(t), (āi(t), ā−i(t)), p̄

i(t), q̄i(t)
)
= max

ai∈Ai

Hi
(
t, x̄(t), (ai, ā−i(t)), p̄

i(t), q̄i(t))
)
. (69)

Following the proof of Theorem 2.2 in [29] (page 351), p̄i(·) is given by

∀t ∈ [0, T ], p̄i(t) = E

[∫ T

t

r1,i(s)Ψ(s)Ψ
−1(t)ds|Ft

]
P − a.s., (70)

where Ψ(·) is the solution of the fundamental equation (51).
From (66)-(69), for all t ∈ [0, T ], āi(t) satisfies (69) if and only if āi(t) maximizes (67),

i.e.,
Gi

H(t, (āi(t), ā−i(s)), p̄
i(t)) = max

ai∈Ai

Gi
H(t, (ai, ā−i(t)), p̄

i(t)). (71)
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Since for each player i ∈ N, āi(·) satisfies (71), then for each t ∈ [0, T ], ā(t) is a Nash
equilibrium for the static game

GH(t) :=
(
N, {Ai, i ∈ N} ,

{
Gi

H(t, ·, p̄i(t)), i ∈ N
})

. (72)

Note that, by (67), for each t ∈ [0, T ], the static game G(t) depends only on r2,i(t, ·) and
p̄i(t) for all i ∈ N, and F2(t, ·). Futhermore, from (70), each p̄i(·) does not depend on x̄(·), so
the Nash equilibrium ā(·) depends only on the time parameter t. ⊓⊔

Remark 5.2. Note that this kind of game will satisfy the Certain Equivalence Principle because
each p̄i(·) is given by equation (70) (see Proposition 4.1 and Corollary 4.1). Moreover,

∀i ∈ {1, . . . , k}, p̄i(t) = λi(t) ∀t ∈ [0, T ],

where λi(·) is the costate vector of player i in the corresponding deterministic game (see
Section 3).

6 Examples

In this section, first, we comment on some published examples that illustrate our results. All
of these examples use the maximum principle, as in the previous sections.

Finally, we present some examples based on the so-called “verification theorems” in dy-
namic programming. Namely, first, we obtain a sufficiently smooth solution to the associated
Hamilton-Jacobi-Bellman (HJB) equation, which gives us the OCP’s value function; this func-
tion is then used to obtain an optimal control. In our present situation, the first step is trivial
because we already know that the value function is linear in the state variable, i.e.,

V (t, x) = Mx+N (73)

for some constants M and N . Hence we only need to determine these constants and then we
find an optimal control.

6.1 Some already known examples

General classes of linear-state differential games (even more general than (3.1)-(3.2) above)
are introduced in Dockner et al. [8], Section 7.2 and also in [12], page 262. Particular examples
are also introduced in, for instance, Section 7.12.2 in Haurie et al. [12]. Similarly, Bacchiega
et al. [3] and Jorgensen et al. [16] study important properties and particular applications of
linear-state differential games. Other applications can be seen in Long [19], [20].

Example 6.1 In general, calculating the costate function λ(·) in (19)-(20), might be difficult
because the transition matrix Φ, generated by F1, is not easy to calculate. A stronger hy-
pothesis needs to be made in order to get a simple expression for Φ: for example, if for all
s, t ∈ [0, T ], we have F1(s)F1(t) = F1(t)F1(s) (as in the time-invariant case) then

Φ(t, s) = exp

(∫ t

s

F1(τ)dτ

)
. (74)

See [18] page 26 for a proof of (74).
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Consider the OCP with X = R and A = Rm and{
ẋ(t) = F1(t)x(t) + F2(t, a(t))

r(t, x, a) = r1(t)x+ a⋆Q(t)a
(75)

where F1, r1 : [0, T ] → R are piecewise continuous functions (r1 ̸≡ 0) and F2 : [0, T ]×A → R,
Q : [0, T ] → Rm×m are such that for all 0 ≤ t ≤ T, Q(t) is strictly negative definite, and
F2(t, ·) is a concave and continuously differentiable.

From (19), (20), (21) and (74) the costate function λ(·) is given by

λ(t) = exp

(
−
∫ t

0

F1(s)ds

)
λ(0)−

∫ t

0

exp

(
−
∫ t

s

F1(τ)dτ

)
r1(s)ds (76)

with

λ(0) = exp

(∫ T

0

F1(s)ds

)∫ T

0

exp

(
−
∫ T

s

F1(τ)dτ

)
r1(s)ds, (77)

which implies

λ(t) =

∫ T

t

exp

(∫ s

t

F1(τ)dτ

)
r1(s)ds ∀t ∈ [0, T ]. (78)

If ā(·) is an optimal control for (75), then for all t ∈ [0, T ],

ā(t)⋆Q(t)ā(t) + λ(t)F2(t, ā(t) = max
a∈A

{a⋆Q(t)a+ λ(t)F2(t, a)} (79)

Note that a → a⋆Q(t)a + λ(t)F2(t, a) is continuously differentiable. This means that for
all t ∈ [0, T ], ā(t) satisfies

∂

∂a
(a⋆Q(t)a+ λ(t)F2(t, a)) |a=ā(t) = 0 (80)

where
∂

∂a
(a⋆Q(t)a+ λ(t)F2(t, a)) = a⋆ (Q(t) +Q(t)⋆) + λ(t)

∂

∂a
F2(t, a). (81)

Therefore, if ā(·) is an optimal control for (75), then for all t ∈ [0, T ],

ā(t) = −λ(t) (Q(t) +Q(t)⋆)
−1

(
∂

∂a
F2(t, a)|a=ā(t)

)⋆

, (82)

where Q(t)+Q(t)⋆ is invertible because it is a symmetric and strictly negative definite matrix.
Now suppose that F2 satisfies one of the following cases

1. F2(t, a) = D(t)a with D : [0, T ] → R1×m a piecewise continuous function,
2. F2(t, a) = a⋆D(t)a with D(t) a positive negative m×m- matrix.

If F2 satisfies 1, then from (82)

ā(t) = −λ(t) (Q(t) +Q(t)⋆)
−1

(D(t))
⋆ ∀t ∈ [0, T ].

If F2 satisfies 2, then from (80) and (81)[
(Q(t) + λ(t)D(t)) + (Q(t) + λ(t)D(t))

⋆]
ā(t) = 0 ∀t ∈ [0, T ]. (83)
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Note that (Q(t) + λ(t)D(t)) is a strictly negative definite matrix if for all t ∈ [0, T ], λ(t) ≥ 0.
From (76) and (77), λ(t) ≥ 0 if and only if

λ(0) ≥
∫ t

0

exp

(∫ s

0

F1(σ)dσ

)
r1(s)ds.

Since we can writte (77) as

λ(0) =

∫ T

0

exp

(∫ s

0

F1(σ)dσ

)
r1(s)ds,

then it suffices that r1 ≥ 0 in order that, for all t ∈ [0, T ], λ(t) ≥ 0.
It follows that if r1 ≥ 0, then for all t ∈ [0, T ], (Q(t) + λ(t)D(t)) is a strictly negative

definite matrix which implies that for all t ∈ [0, T ]

(Q(t) + λ(t)D(t)) + (Q(t) + λ(t)D(t))
⋆

is invertible. Therefore, it follows from (83) that for all t ∈ [0, T ], ā(t) = 0. ♢

Example 6.2 Consider a finite-horizon differential game with{
ẋ(t) = F1(t)x(t) + F2(t,a(t)),

ri(t,x,a) = r1,i(t)x+ a⋆Qi(t)a,
(84)

where for all i ∈ N, the functions F1, r1,i : [0, T ] → R are piecewise continuous functions
(r1,i ̸≡ 0) and F2 : [0, T ] × A → R, Qi : [0, T ] → Rk×k are such that for all 0 ≤ t ≤ T, Qi(t)
is strictly negative definite and F2(t, ·) is concave and continuously differentiable.

From (35), for each player i the costate function λi(·) is given by

λi(t) = exp

(
−
∫ t

0

F1(s)ds

)
λ(0)−

∫ t

0

exp

(
−
∫ t

s

F1(σ)dσ

)
r1,i(s)ds (85)

with

λi(0) = exp

(∫ T

0

F1(s)ds

)∫ T

0

exp

(
−
∫ T

s

F1(σ)dσ

)
r1,i(s)ds. (86)

In this example, the static game (37) satisfies for each player i ∈ N and t ∈ [0, T ]

Gi(t,a, λi(t)) = a⋆Qi(t)a+ λi(t)F2(t,a). (87)

From Theorem 3.1 and Theorem 3.2, ā(·) is a Nash equilibrium for (84) if and only if for
all t

∂

∂ai

(
a⋆Qi(t)a+ λi(t)F2(t,a)

)
|a=ā(t) = 0 ∀i ∈ N. (88)

Therefore, ā(·) is a Nash equilibrium for (84) if and only if for all t, ā(t) solves the following
system of equations

Ri [Qi(t) +Qi(t)
∗] ā(t) + λi(t)

∂

∂ai
F2(t,a)|a=ā(t) = 0 ∀i ∈ N, (89)

where Ri [Qi(t) +Qi(t)
∗] is the ith row of Qi(t) +Qi(t)

∗.
As a particular case, if F2(t,a) = D(t)a, D(t) = (D1(t), . . . , Dk(t)), then from (89) ā(·) is

a Nash-equilibrium for (84) if and only if ā(t) solves the following system of linear equations

Ri [Qi(t) +Qi(t)
∗] ā(t) = −λi(t)Di(t) ∀i ∈ N, (90)

for all t. ♢
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Example 6.3 Consider the stochastic OCP with X = R and A = Rm with{
dx(t) = [F1(t)x(t) + F2(t, a(t))] dt+

∑k
j=1 [Bj(t)x(t) + bi(t)] dWj(t)

r(t, x, a) = r1(t)x+ a⋆Q(t)a
(91)

with F1, F2, r1 as in Section 2, for all 1 ≤ j ≤ k, Bi(·), bi(·) are piecewise-continuous and W
a d−dimensional Brownian motion, as in (40).

From equation (53), the optimal control ā(·) satisfies P − a.s.

ā(t)⋆Q(t)ā(t) + p̄(t)F2(t, ā(t)) = max
a∈A

{a⋆Q(t)a+ p̄(t)F2(t, a)} . (92)

Note that (92) is the same as equation (79) with p̄(t) instead of λ(t). Therefore, as in Example
6.1, ā(·) satisfies P − a.s.

ā(t) = −p̄(t) (Q(t) +Q(t)⋆)
−1

(
∂

∂a
F2(t, a)|a=ā(t)

)⋆

.

It follows from Proposition 4.1 and Corollary 4.1

p̄(t) = λ(t) =

∫ T

t

exp

(∫ s

t

F1(τ)dτ

)
r1(s)ds ∀t ∈ [0, T ]. (93)

Observe that for all t ∈ [0, T ], p̄(t) = λ(t) where λ(·) is the costate function for the OCP in
Example 6.1 (see equation (78)). This observation and equation (92) imply that the optimal
control for the stochastic OCP (91) is deterministic and coincides with the optimal control
in Example 6.1. Hence we have an example of the certainty equivalence principle [14]. ♢

Example 6.3 can be rewritten into a stochastic differential game (as we did for the de-
terministic case in Examples 6.1 and 6.2). For this stochastic differential game, the certainty
equivalence principle is satisfied (see Remark 5.2 in Section 5) . To avoid being repetitious,
we omit the proof.

6.2 Examples using dynamic programming

Remark 6.1 (a) Given a real-valued function (t, x) 7→ v(t, x) on (0, T ) × Rn, vt denotes the
partial derivative of v with respect to t, and vx is the gradient of v, that is, the row vector
(vx1 , ..., vxn) of partial derivatives. The Hessian matrix is vxx = (vxixj ).

(b) Let us consider the infinite-horizon discounted reward OCP (23)-(24). (The finite-
horizon case is similar). Let v(t, x) be a real-valued continuously differentiable function on
[0,∞)×X that satisfies the HJB (or dynamic programming or Bellman) equation [13,29]

αv = vt +max
a∈A

[r(t, x, a) + vx · F (t, x, a)] (94)

for all (t, x) ∈ [0,∞)×X, with “terminal condition”

e−αtv(t, x∗(t)) → 0 as t → ∞ (95)

where x∗(·) is the state trajectory corresponding to an optimal control.
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(c) For an infinite-horizon stochastic OCP as in Section 4.2, the HJB equation is as in
(94)-(95) except that the left-hand side of (94) is replaced by

αv − 1

2

n∑
i,j=1

vxixj
di,j (96)

where the di,j are the components of the matrix D(x) := σ(x)σ(x)∗, whereas v(t, x∗(t)) in
(95) is replaced by its expected value (see, for instance, Hernandez-Lerma et al. [13]).

The following example is a version of Section 7.12.2 in Haurie et al. [12].

Example 6.4 We wish to maximize

J(x, a(·)) :=
∫ ∞

0

e−αt[x(t) + ln(a(t))]dt

with 0 < α ≤ 1
4 and 0 < a(·) < 1, subject to

ẋ(t) = (1− a(t))a(t), x(0) = x > 0. (97)

In this case, the HJB equation (95) becomes

αv = max
a

[x+ ln(a) + vx · (1− a)a],

which, taking v(x) = Mx+N as in (73), reduces to

α(Mx+N) = x+max
a

[ln(a) +M(1− a)a].

Comparing coefficients in this equation we obtain M = 1
α , whereas the right-hand side is

maximized by the positive root, say a∗, of the quadratic equation

2Ma2 −Ma− 1 = 0, i.e., a∗ =
1

4
(1 +

√
(1 + 8α)).

Note that the constant optimal control ā(·) ≡ a∗ is in (0, 1). Moreover, N = ( 1
α )[ln a

∗+M(1−
a∗)a∗]. Finally, from (97) we obtain the state trajectory x̄(·) corresponding to ā(·), and then
the condition (95), i.e., e−αtv(x̄(t)) → 0 is trivially satisfied. ♢

Example 6.5 Consider the following stochastic OCP: maximize

E

[∫ ∞

0

(βx(t) + a(t)γ)e−ρt

]
dt,

with β > 0, γ ∈ (0, 1) and a(·) ≥ 0, subject to

dx(t) = (δx(t)− a(t))dt+ σx(t)dW (t), x(0) = x > 0 (98)

with coefficients 0 < δ < ρ and σ > 0. Suppose that the value function v(·) is as in (73).
Then, with v(x) = Mx+N, the HJB equation (94)− (96) becomes

ρ(Mx+N) = (β +Mδ)x+max
a

(aγ −Ma).

Hence, comparing coefficients, we see that M = β
ρ−δ , and the maximum at the right-hand

side is attained at a∗ =
(

γ
M

) 1
1−γ . Moreover, N = ρ−1((a∗)γ − Ma∗). Finally, it remains to
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verify (95). To this end, replacing the constant optimal control ā(·) ≡ a∗ in (98) we obtain
that the state trajectory satisfies the stochastic linear equation

dx = (δx− a∗)dt+ σxdW, x(0) = x.

Therefore x̄(·) ≡ x(·) is given by (see Arnold [1], for instance)

x(t) =

(
x− a∗

δ

)
eδt +

a∗

δ
+ σ

∫ t

0

x(s)eδ(s−t)dW (s).

Therefore, for any initial state x(0) = x, e−ρtE[v(x(t))] = e−ρt(ME[x(t)] +N) → 0 as t → 0
since, by assumption, ρ > δ. ♢

Remark 6.2 A key hypothesis in our results is that r1(·) ̸≡ 0. If this is not true, then our
approach might fail. For instance, by (19)-(21), the adjoint function λ(·) vanishes if r1(·) ≡ 0.
Hence, as illustrated in the following Examples 6.6 and 6.7, the OCP’s value function V is
not necessarily linear.

Example 6.6 (Exercise 7 in Dockner et al. 2000, page 82). The OCP is to maximize∫ ∞

0

e−αtaγ(t)dt

subject to ẋ(t) = x(t) − a(t), with x(·) and a(·) ≥ 0, and x(0) = x0 > 0. This is an OCP
as in Section 2 with state transition function and running reward F (t, x, a) = x − a and
r(t, x, a) = aγ , respectively. The corresponding HJB equation is given by

v(x, t)− vt(x, t) = max
a

{aγ − vx(x, t)a}+ vx(x, t)x (99)

Let
dγ(α) := max

a
{aγ − αa} ∀α > 0, (100)

and let aγ(α) be the point where a 7→ aγ − αa attains its maximum, that is

aγ(α) =
(γ
α

) 1
1−γ ∀α > 0. (101)

Therefore

dγ(α) = α
(γ
α

) 1
1−γ

(
1−γ

γ

)
. (102)

Note that for all α > 0, v1(x, t;α) := αx+ dγ(α) satisfies equation (99), and for this case, we
get

ā(t;α) = aγ(α) ∀t ≥ 0,

and

x̄(t;α) = et
(
x0 − aγ(α)

∫ t

0

e−sds

)
∀t ≥ 0.

More explicit,
x̄(t;α) = et (x0 − aγ(α)) + aγ(α) ∀t ≥ 0.

Note that we need for all t ≥ 0, x̄(t;α) ≥ 0, so it is necessary that

x0 − aγ(α) ≥ 0. (103)
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Now from Lemma 3.1(i) in [8] (see page 64), v1(x, t;α) is the value function of the OCP
(optimality is understood in the sense of the catching up criterion, see [8] page 63) if

lim sup
t→∞

e−tv1(x
⋆(t), t;α) ≤ 0,

that is, if

x0 − aγ(α) ≤ 0. (104)

There is only one α which satisfies (103) and (104); this is given by α0 = γ

x1−γ
0

.

Therefore,

v1

(
x, t;

γ

x1−γ
0

)
=

(
γ

x1−γ
0

)
x+ dγ

(
γ

x1−γ
0

)
, (105)

where

dγ

(
γ

x1−γ
0

)
= γxγ

0

(
1−γ

γ

)
. (106)

From equations (105) and (106), the value of the OCP is given by

V (x0) = v1

(
x0, 0;

γ

x1−γ
0

)
= xγ

0 ∀x0 > 0.

This implies that V is not linear in the initial conditions as in Theorem 2.4. Note that the
optimal control and trajectory are given by

ā(t;α0) = x0 x̄(t;α0) = x0 ∀t ≥ 0,

respectively. ♢

Example 6.7 (Example 6.15 in Hernández–Lerma et al. [13]). Maximization of total dis-
counted utility of consumption.

dx(t) = [αx(t)− a(t)]dt+ σx(t)dW (t)

with x(0) = x > 0. The OCP is to maximize the expected discounted utility

E

[∫ ∞

0

e−ρtU [a(t)]dt

]
,

where U(·) is a given utility function. Since r1(·) ≡ 0, the value function V (·) might not be
linear in the state. For instance, if U(a) = aγ

γ , with 0 < γ < 1, then V (x) = hxγ for some

constant h > 0. For details, see [13], Example 6.15.
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7 Conclusions

In this paper we have studied a class of linear-state optimal control problems and noncoop-
erative differential games. Deterministic and stochastic systems were considered, as well as
finite- and infinite-horizon problems.

By means of the maximum principle [2,11,13,27,29], we showed that the optimal control is
a function of the time parameter t only, which means that the optimal control is independent
of the state process. This fact implies that (i) the OCP’s value function is linear in the state
variable and, in addition, (ii) for the stochastic case, the certainty equivalence principle is
satisfied.

Throughout this paper, we assume that the reward function r (see (5) and (41)) depends
on the state variable, that is r1 ̸≡ 0. If this does not hold, we might not obtain the linearity of
the value function (See Remark 6.2 and Examples 6.6 and 6.7). In this case, equations (21),
(27), (52) and Lemma 4.1 imply that λ ≡ 0 and p̄ ≡ 0, which means that the optimal control,
ā(t), satisfies

r2(t, ā(t)) = max
a∈A

{r2(t, a)}. (107)

From equation (107), we get that when r2 is time-invariant, the optimal control solves an
optimization problem. OCPs with this property are called myopic, see for instance [25].
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Appendix: proof of Corollaries 2.1 and 2.2
Proof of Corollary 2.1 By Theorem 2.1

I = Φ(t, s)Φ(s, t),

so

0 =
d

dt
Φ(t, s)Φ(s, t) =

dΦ(t, s)

dt
Φ(s, t) + Φ(t, s)

dΦ(s, t)

dt
.

Hence

Φ(t, s)
dΦ(s, t)

dt
= −dΦ(t, s)

dt
Φ(s, t) = −M(t)Φ(t, s)Φ(s, t),

dΦ(s, t)

dt
= −Φ(s, t)M(t).

⊓⊔
Proof of Corollary 2.2 Let y : [a, b] → Rn×n be the unique solution to the initial value problem

ẏ(t) = M̂(t)y(t) y(0) = y0,

and let x : [a, b] → Rn×n be the unique solution to the initial value problem

ẋ(t) = M(t)y(t) x(0) = x0.

Then
d⟨x, y⟩
dt

= ⟨ẋ, y⟩+ ⟨x, ẏ⟩,

and
⟨ẋ, y⟩+ ⟨x, ẏ⟩ = ⟨Mx, y⟩+ ⟨x,−M⋆y⟩.
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Hence
⟨Mx, y⟩+ ⟨x,−M⋆y⟩ = ⟨x,M⋆y⟩+ ⟨x,−M⋆y⟩.

It follows that, for all t ∈ [a, b], d⟨x,y⟩
dt = 0.

Therefore, there exists c ∈ R such that for all t ∈ [a, b], ⟨x(t), y(t)⟩ = c.
Since x(t) = Φ(t, a)x0 and y(t) = Φ̂(t, a)y0,

⟨Φ(t, a)x0, Φ̂(t, a)y0⟩ = c ∀t ∈ [a, b].

In particular, if t = a, then c = ⟨x0, y0⟩. Note that for all t ∈ [a, b],

⟨Φ(t, a)x0, Φ̂(t, a)y0⟩ = ⟨x0, Φ
⋆(t, a)Φ̂(t, a)y0⟩.

It follows that, for all t ∈ [a, b],

⟨x0, Φ
⋆(t, a)Φ̂(t, a)y0⟩ = ⟨x0, y0⟩,

and ⟨x0,
(
Φ⋆(t, a)Φ̂(t, a)−I

)
y0⟩ = 0. Since we can let y0 be arbitrary, we conclude that

Φ⋆(t, a)Φ̂(t, a) = I ∀t ∈ [a, b],

that is, Φ̂(t, a) = (Φ⋆)
−1

(t, a) = Φ⋆(a, t) by Theorem 2.1. ⊓⊔
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