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Abstract

This paper deals with discrete-time Markov control processes in Borel spaces and un-
bounded rewards. Under suitable hypotheses, we show that a randomized stationary
policy is optimal for a certain expected constrained problem (ECP) if and only if it is op-
timal for the corresponding pathwise constrained problem (pathwise CP). Moreover, we
show that a parametric family of unconstrained optimality equations posseses compact-
ness and convergence properties that lead to an approximation scheme which allows us
to obtain constrained optimal policies as the limit of unconstrained deterministic opti-
mal policies. In addition, we give sufficient conditions for the existence of deterministic
policies that solve these constrained problems.
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1 Introduction

This paper is about discrete-time Markov control processes (MCPs) in Borel spaces. Our
problem is to maximize a pathwise long-run average reward subject to a constraint on a
similar pathwise cost. To this end, we consider a corresponding expected average reward
and average cost, and show that a stationary policy (either randomized or deterministic)
is optimal for the expected constrained problem (ECP) if and only if it is optimal for the
pathwise constrained problem (pathwise CP). Moreover, we show that a parametric family of
unconstrained optimality equations posseses compactness and convergence properties that
lead to an approximation scheme which allows us to obtain constrained optimal policies as
the limit of unconstrained deterministic optimal policies. Furthermore, we give sufficient
conditions for the existence of deterministic stationary policies that yield practical ways
to solve our constrained problem. These results are clearly illustred with a linear system-
quadratic reward/cost (also known as an LQ system).

Constrained MCPs form an important class of stochastic control problems with ap-
plications in many areas, including mathematical economics, signal processing, queueing
systems, epidemic processes, etc.; see, for instance, [2, 3, 4, 5, 6, 7, 10, 11, 16, 19, 22, 23, 24]
as well as the books [1] and [20] for MCPs with expected average rewards/costs and/or
countable (possibly finite) state space.
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Among the few exceptions dealing with pathwise constraints we can mention the papers
[22, 23, 10, 24] and our work [18].

In [18], we obtain the existence of optimal policies for a long-run pathwise (that is,
sample-path) average reward subject to constraints on a long-run pathwise average cost.
To do this, we give conditions for the existence of optimal policies for an average reward
MCP with expected constraints, and then, these results are extended to the problem with
pathwise constraints. The present paper is a sequel to [18].

We present here three main results. First, Theorem 4.3 proves that the ECP is “essen-
tially” equivalent to the pathwise CP. Second, Theorem 4.8 gives several characterizations
for a deterministic stationary policy to be optimal for the pathwise CP. Third, both The-
orems 4.8 and 4.9 give approximation schemes to obtain randomized constrained optimal
policies. To obtain these results we essentially follow the outline presented by Beutler and
Ross [3] for finite-state finite-action MCPs. In short, we extend the results in [3] to MCPs
with uncountable Borel spaces.

The remainder of the paper is organized as follows. In Section 2 we recall the basic
components of a Markov control model, and state some of our main assumptions. Section 3
summarizes some facts on the expected constrained problem (ECP). In Section 4 we consider
the pathwise constrained problem (pathwise CP) and introduce our main results, Theorems
4.3, 4.8, and 4.9. The proof of these results is presented in Section 5. Finally, an LQ system
in Section 6 illustrates our results.

2 The control model

Let (X,A, {A(x) : x ∈ X}, Q, r, c) be a discrete time Markov control model with state space
X and control (or action) set A, both assumed to be separable metric spaces with Borel
σ-algebras B(X) and B(A), respectively. For each x ∈ X there is a nonempty set A(x) in
B(A) which represents the set of feasible actions in the state x. The set

K := {(x, a) : x ∈ X, a ∈ A(x)}(1)

is assumed to be a Borel subset of X × A. The transition law Q is a stochastic kernel on
X given K. The one-stage reward r and the one-stage cost c are real-valued measurable
functions on K. We interpret r as a reward to be maximized with the restriction that the
cost c does not exceed (in a suitably defined sense) a given value.

The class of measurable functions f : X → A such that f(x) is in A(x) for every x ∈ X
is denoted by F, and we suppose that it is nonempty. Let Φ be the set of stochastic kernels
ϕ on A given X for which ϕ(A(x)|x) = 1 for all x ∈ X.

Control policies. For every n = 0, 1, . . ., let Hn be the family of admissible histories
up to time n; that is, H0 := X, and Hn := Kn ×X if n ≥ 1. A control policy is a sequence
π = {πn} of stochastic kernels πn on A given Hn such that πn(A(xn)|hn) = 1 for every
n-history hn = (x0, a0, · · · , xn−1, an−1, xn) in Hn. The class of all policies is denoted by Π.
Moreover, a policy π = {πn} is said to be a

(a) randomized stationary policy if there exists a stochastic kernel ϕ ∈ Φ such that
πn(·|hn) = ϕ(·|xn) for all hn ∈ Hn and n = 0, 1, . . .;
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(b) deterministic stationary policy if there exists f ∈ F such that πn(·|hn) is the Dirac
measure at f(xn) ∈ A(xn) for all hn ∈ Hn and n = 0, 1, . . ..

Therefore, we have
F ⊂ Φ ⊂ Π.

Following a standard convention, we identify Φ with the class of randomized stationary
policies and F with the class of deterministic stationary policies.

Given ϕ ∈ Φ, we will use the following notation:

rϕ(x) :=

∫

A

r(x, a)ϕ(da|x), cϕ(x) :=

∫

A

c(x, a)ϕ(da|x),(2)

Qϕ(·|x) :=

∫

A

Q(·|x, a)ϕ(da|x)(3)

for all x ∈ X. Moreover, the n-step transition probabilities are denoted by Qn
ϕ, with

Q1
ϕ(·|x) := Qϕ(·|x) and Q0

ϕ(·|x) := δx, the Dirac measure concentrated at the initial state
x. We can write Qn

ϕ recursively as

Qn
ϕ(·|x) =

∫

X

Qϕ(·|y)Qn−1
ϕ (dy|x), n ≥ 1.(4)

In particular, for a deterministic policy f ∈ F, (2)-(3) become

rf (x) = c(x, f(x)), cf (x) = c(x, f(x)),

Qf (·|x) = Q(·|x, f(x)).

Let (Ω,F) be the (canonical) measurable space consisting of the sample space Ω :=
(X × A)∞ and its product σ-algebra F . Then, for each policy π ∈ Π and initial state
x ∈ X, a stochastic process {(xn, an)} and a probability measure P π

x is defined on (Ω,F)
in a canonical way, where xn and an represent the state and control at time n, n = 0, 1, . . ..
The expectation operator with respect to P π

x is denoted by Eπ
x .

Given π ∈ Π, x ∈ X, and n = 1, 2, . . ., we define the n-stage pathwise reward and the
n-stage expected reward as

Sn(π, x) :=
n−1∑

k=0

r(xk, ak) and Jn(π, x) := Eπ
x [Sn(π, x)],

respectively. Replacing the reward function r with the cost c we obtain the definition of
Sc,n(π, x) and Jc,n(π, x).

Definition 2.1 The (long-run) pathwise average reward and the (long-run) expected aver-
age reward are given by

S(π, x) := lim inf
n→∞

1

n
Sn(π, x) and J(π, x) := lim inf

n→∞

1

n
Jn(π, x),

respectively. Similarly, the pathwise average cost and the expected average cost are respec-
tively defined as

Sc(π, x) := lim sup
n→∞

1

n
Sc,n(π, x) and Jc(π, x) := lim sup

n→∞

1

n
Jc,n(π, x).
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Observe that J(π, x) (and S(π, x)) is defined as a “lim inf”, whereas Jc(π, x) (and
Sc(π, x)) is a “lim sup”. This is because according to standard conventions, the function r
is interpreted as a reward-per-stage function, whereas the function c is a cost-per-stage.

We will introduce four sets of hypotheses. The first one, Assumption 2.2, consists of
standard continuity-compactness conditions (see, for instance, [9, 13, 14, 21]) together with
a growth condition (b1) on the one-step reward r and the cost c, and the Lyapunov-like
condition (b3).

Assumption 2.2 For every state x ∈ X:
(a) A(x) is a compact subset of A;
(b) there exists a measurable function W ≥ 1 on X, a bounded measurable function

b ≥ 0, and nonnegative constants r1, c1, and β, with β < 1, such that
(b1) |r(x, a)| ≤ r1W (x), |c(x, a)| ≤ c1W (x) ∀(x, a) ∈ K;
(b2)

∫
X

W (y)Q(dy|x, a) is continuous in a ∈ A(x); and
(b3)

∫
X

W (y)Q(dy|x, a) ≤ βW (x) + b(x) for every x ∈ X.

To state our second set of hypotheses, we will use the following notation, where W is
the function in Assumption 2.2(b): BW (X) denotes the normed linear space of measurable
functions u on X with a finite W -norm ‖u‖W , which is defined as

‖u‖W := sup
x∈X

|u(x)|/W (x).(5)

In this case we say that u is W -bounded. Similarly, we say that a function v : K → R
belongs to BW (K) if x 7→ supa∈A(x) |v(x, a)| is in BW (X). In particular, by Assumption
2.2(b1), r(x, a) and c(x, a) are both in BW (K).

We write

µ(u) :=

∫

X

u(y)µ(dy),

whenever the integral is well defined.
The next set of hypotheses guarantees that the MCP has a nice “stable” behavior

uniformly in Φ.

Assumption 2.3 For each randomized stationary policy ϕ ∈ Φ:
(a) (W -geometric ergodicity) There exists a (necessarily unique) probability measure µϕ

on X such that (with Qt
ϕ as in (3)-(4))

∣∣∣∣∣

∫

X

u(y)Qt
ϕ(dy|x) − µϕ(u)

∣∣∣∣∣ ≤ ‖u‖W RρtW (x),(6)

for every t = 0, 1, . . ., u ∈ BW (X), and x ∈ X, where R > 0 and 0 < ρ < 1 are constants
independent of ϕ.

(b) (Irreducibility) There exists a σ-finite measure ν on B(X) with respect to which Qϕ

is ν-irreducible, which means that if B ∈ B(X) is such that ν(B) > 0, then for every x ∈ X
there exists t > 0 for which Qt

ϕ(B|x) > 0.



MCPs with pathwise constraints 5

Remark 2.4 For a discussion of Assumption 2.3, see Remark 2.4 in [18]. In particular,
by Assumptions 2.3(a) and 2.2(b3), we have that

µϕ(W ) ≤ b/(1 − β) < ∞ ∀ϕ ∈ Φ,(7)

with b = supx∈X b(x). Moreover, by (6), J(ϕ, x) and Jc(ϕ, x) in Definition 2.1 are constant
(that is, do not depend on the initial state x), and verify that

J(ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

r(xk, ak) = µϕ(rϕ) =: g(ϕ),

where the letter g is an abbreviation for “gain”, which is another standard name for “average
reward” [19], [21], and

Jc(ϕ, x) = lim
n→∞

1

n
Eϕ

x

n−1∑

k=0

c(xk, ak) = µϕ(cϕ) =: gc(ϕ).

In the following assumption we strengthen the growth condition on the reward function
r and the cost function c in Assumption 2.2(b1).

Assumption 2.5 There exist positive constants r2 and c2 such that

r(x, a)2 ≤ r2W (x) and c(x, a)2 ≤ c2W (x) ∀(x, a) ∈ K.

Note that, since W ≥ 1, Assumption 2.5 implies Assumption 2.2(b1).

In the remainder of this paper we consider the function

w(x) :=
√

W (x) ∀x ∈ X.

We also require the following assumption.

Assumption 2.6 (a) The transition law Q is strongly continuous on K, that is, the map-
ping

(x, a) 7→
∫

X

v(y)Q(dy|x, a)

is continuous on K for every measurable bounded function v on X.

(b) The cost function c is lower semicontinuous (l.s.c.) on K.

(c) The reward function r is upper semicontinuous (u.s.c.) on K.

(d) The function w, seen as a function (x, a) 7→ w(x) on K, is continuous. Moreover,
w is a so-called moment function on K, that is, there exists a nondecreasing sequence of
compact sets Kn ↑ K such that

lim
n→∞

inf{w(x) : (x, a) /∈ Kn} = ∞.
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Remark 2.7 In Assumption 2.6(b), we omit the restrictive condition on the cost fuction c
imposed in [18, Assumption 3.3(b)], which establishes that c is nonnegative. Nonnegativity
of c was crucial to prove that the set Γ(θ) in (26) below is compact in the w-weak topology
(see, for instance, [18, Section 5] and [17, Lemma 5.2.2]). Here, if we assume the l.s.c. of
c in addition to Assumptions 2.5 and 2.6(d) above, we can get the same results obtained in
[18]. A moment function, such as w in Assumption 2.6(d), is also known as a Lyapunov
(or Lyapunov-like) function.

3 MCPs with expected constraints

In this section we summarize some facts from [17, 18] on MCPs with expected constraints.
These results are used in Section 4 to state our main results.

By the Assumption 2.6(b) and the Remark 2.4, we can define

θmin := min
ϕ∈Φ

∫

X

cϕ(y)µϕ(dy) and θmax := sup
ϕ∈Φ

∫

X

cϕ(y)µϕ(dy),(8)

which are finite numbers. To avoid trivial situations, we will consider a constraint constant
θ such that

θmin < θ < θmax.(9)

Let J(π, x) and Jc(π, x) be the long-run expected averages in Definition 2.1, and let θ
be a constant as in (9). Then the expected constrained problem (ECP) is:

maximize J(π, x)(10)

subject to: π ∈ Π and Jc(π, x) ≤ θ ∀x ∈ X.(11)

Definition 3.1 A policy π ∈ Π is said to be feasible for the ECP if it satisfies the con-
straints in (11), that is, Jc(π, x) ≤ θ for all x in X. Moreover, a feasible policy π∗ is called
optimal for the ECP (10)-(11) if J(π, x) ≤ J(π∗, x) for every feasible π.

The following proposition states the existence of an optimal policy for the ECP (10)-
(11). Furthermore, it establishes the existence of a solution to the average reward optimality
equation (AROE) (12) below. For a proof of the proposition see [18, Theorem 5.2] or [17,
Theorem 5.3.1].

Proposition 3.2 Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are satisfied. Then:

(i) There exists a number Λ0 ≤ 0, a constant V (θ) which depends on θ, and h ∈ Bw(X)
such that the AROE

V (θ) + h(x) = max
a∈A(x)

[
r(x, a) +

(
c(x, a) − θ

)
· Λ0 +

∫

X

h(y)Q(dy|x, a)

]
(12)

holds for every x ∈ X.
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(ii) There exists a randomized stationary policy ϕ∗ ∈ Φ that attains the maximum in the
right-side of (12), i.e.,

V (θ) + h(x) = rϕ∗(x) +
(
cϕ∗(x) − θ

)
· Λ0 +

∫

X

h(y)Qϕ∗(dy|x)(13)

for all x ∈ X. Moreover, ϕ∗ is optimal for the ECP (10)-(11). In addition, the following
“orthogonality” property (using the notation in the Remark 2.4) is satisfied

(
gc(ϕ

∗) − θ
)
· Λ0 = 0,(14)

which together with (13) gives

V (θ) = µϕ∗(rϕ∗) = g(ϕ∗),(15)

that is, V (θ) is the optimal value for the ECP (10)-(11).

An optimal policy ϕ∗ ∈ Φ for the ECP satisfying the AROE (13) is called a canonical
policy for the ECP.

Proposition 3.2 shows that the ECP (10)-(11) induces an unconstrained problem de-
pending on a real number Λ0 ≤ 0, which is unknown. The next result states that the ECP
can be solved by means of a parametric family of AROEs (see, for instance, [18, Theorem
5.3]) or [17, Theorem 5.4.1]).

Proposition 3.3 Suppose that the hypotheses of Proposition 3.2 are satisfied, and consider
the ECP (10)-(11). For each real number Λ ≤ 0, let (ρ(Λ), hΛ) ∈ R×BW (X) be a solution
to the AROE

ρ(Λ) + hΛ(x) = max
a∈A(x)

[
r(x, a) + (c(x, a) − θ) · Λ +

∫

X

hΛ(y)Q(dy|x, a)
]

(16)

for every x ∈ X. Then

V (θ) = min
Λ≤0

ρ(Λ).(17)

4 MCPs with pathwise constraints: main results

Let θ ∈ R be as in (9). With the notation in Definition 2.1 we want to maximize the
pathwise average reward S(π, x) over the set of all policies π ∈ Π satisfying, for every initial
state x ∈ X, the following constraint on the pathwise average cost

Sc(π, x) ≤ θ P π
x − a.s.

Hence, we can explicitly state our pathwise CP as follows:

maximize S(π, x)(18)
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subject to: π ∈ Π and Sc(π, x) ≤ θ P π
x − a.s. ∀x ∈ X.(19)

A policy π ∈ Π is said to be feasible for the pathwise CP if it satisfies (19).

Let ϕ ∈ Φ be an arbitrary randomized stationary policy, and let g(ϕ) and gc(ϕ) be as
in Remark 2.4. Using the strong law of large numbers for Markov chains it can be shown
that, for every x ∈ X,

S(ϕ, x) = lim
n→∞

1

n

n−1∑

k=0

rϕ(xk) = g(ϕ) and Sc(ϕ, x) = lim
n→∞

1

n

n−1∑

k=0

cϕ(xk) = gc(ϕ)

Pϕ
x − a.s. This fact is used in the following definition.

Definition 4.1 Let ϕ∗ ∈ Φ be a feasible policy for the pathwise CP, i.e., gc(ϕ
∗) ≤ θ. Then

ϕ∗ is said to be optimal for the pathwise CP (18)-(19) if for each feasible π ∈ Π we have

S(π, x) ≤ g(ϕ∗) P π
x − a.s.

If ϕ∗ is an optimal policy for the problem (18)-(19), then we define the optimal value of the
pathwise CP as V ∗(θ) := g(ϕ∗).

The following result establishes the existence of optimal policies for the pathwise CP
(18)-(19) (see, for instance, [18, Theorem 3.4]) or [17, Theorem 5.5.2]).

Proposition 4.2 Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 hold. Then:

(i) There exists an optimal policy ϕ∗ ∈ Φ for the pathwise CP (18)-(19). In particular,
gc(ϕ

∗) ≤ θ and g(ϕ∗) = V ∗(θ), with V ∗(θ) as in Definition 4.1.

(ii) There exist Λ0 ≤ 0 and h ∈ Bw(X) such that the average reward optimality equation
(AROE)

V ∗(θ) + h(x) = max
a∈A(x)

[
r(x, a) +

(
c(x, a) − θ

)
· Λ0 +

∫

X

h(y)Q(dy|x, a)
]

= rϕ∗(x) +
(
cϕ∗(x) − θ

)
· Λ0 +

∫

X

h(y)Qϕ∗(dy|x)(20)

holds for every x ∈ X. Furthermore, we have the “orthogonality” property

(gc(ϕ
∗) − θ) · Λ0 = 0.(21)

(iii) For each Λ ≤ 0, let (ρ(Λ), hΛ) ∈ R × BW (X) be a solution to the AROE

ρ(Λ) + hΛ(x) = max
a∈A(x)

[
r(x, a) + (c(x, a) − θ) · Λ +

∫

X

hΛ(y)Q(dy|x, a)
]

for every x ∈ X. Then V ∗(θ) = V (θ) = minΛ≤0 ρ(Λ), with V (θ) as in Proposition 3.2(i)
and Proposition 3.3.
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We can now state our first main result, which is proved in Section 5. In this result
we establish that a (randomized) stationary policy is optimal for the pathwise CP (18)-
(19) if and only if it is optimal for the ECP (10)-(11), i.e., the pathwise CP is, under our
assumptions, “essentially” equivalent to the ECP.

Notation. Let Φecp ⊂ Φ be the class of randomized stationary optimal policies for the
ECP (10)-(11), and Φcecp the subclass of Φecp of canonical policies for the ECP.

Moreover, let Fecp ⊂ Φecp be the class of deterministic stationary optimal policies for
the ECP, and Fcecp ⊂ F the subclass of Φcecp of deterministic stationary canonical policies
for the ECP.

Theorem 4.3 Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are satisfied.

(a) Let V (θ) be as in Proposition 3.2. Then, for each feasible policy π ∈ Π for the pathwise
CP (18)-(19), and for each initial state x ∈ X

V (θ) ≥ S(π, x) P π
x − a.s.(22)

Moreover, V (θ) is the optimal value for the pathwise CP (18)-(19), i.e., V (θ) = V ∗(θ).
Furthermore, if ϕ̂ ∈ Φecp is an optimal policy for the ECP (10)-(11), then it is an
optimal policy for the pathwise CP (18)-(19).

(b) Conversely, let ϕ̂ ∈ Φ be an optimal policy for the pathwise CP (18)-(19). Then ϕ̂ is
an optimal policy for the ECP (10)-(11) satisfying

[gc(ϕ̂) − θ] · Λ0 = 0.(23)

In addition, there exists an optimal policy ϕ∗ ∈ Φcecp for the ECP (10)-(11) satisfying
Proposition 3.2(ii) and such that

ϕ̂(·|x) = ϕ∗(·|x) µϕ̂ − a.s.,

and so µϕ̂ = µϕ∗.

(c) Suppose that there exists a deterministic stationary optimal policy f̂ ∈ F for the path-
wise CP (18)-(19). Then f̂ is an optimal policy for the ECP (10)-(11) satisfying

[gc(f̂) − θ] · Λ0 = 0.(24)

Furthermore, there exists a deterministic stationary optimal policy f∗ ∈ Fcecp for the
ECP (10)-(11) satisfying Proposition 3.2(ii) and such that

f̂(x) = f∗(x) µ
f̂
− a.s.,

and so µ
f̂

= µf∗.
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Remark 4.4 Denoting by Φscp ⊂ Φ the class of randomized stationary optimal policies for
the pathwise (sample-path) CP (18)-(19), we may rewrite the statements in Theorem 4.3(a),
(b) as

Φecp = Φscp.

Similarly, if we denote by Fscp ⊂ Φscp the subclass of deterministic stationary optimal
policies for the pathwise CP (18)-(19), then

Fecp = Fscp.

Theorems 4.8 and 4.9 below give conditions to guarantee that Fecp is a nonempty set.
Finally, thanks to Theorem 4.3, we can identify the ECP and the pathwise CP. Hence,

we will refer to these equivalent problems as the constrained problem (CP).

To state our second main result, we will use the following notation.
Let W be as in Assumption 2.2, w :=

√
W , and B(K) the Borel σ-algebra on K; see

(1). We denote by Pw(K) the set of probability measures µ̂ on B(K) such that

∫

K

w(x)µ̂(d(x, a)) < ∞.

This set is supposed to be endowed with the w-weak topology [8, Appendix A.5], i.e., the
smallest topology for which the mapping

µ̂ 7→
∫

K

v dµ̂

on Pw(K) is continuous, for every v ∈ Cw(K), where Cw(K) is the subspace of continuous-
functions in Bw(K). With this topology Pw(K) is separable and metrizable.

For every ϕ ∈ Φ, let µϕ be as in Assumption 2.3(a), and define µ̂ϕ ∈ Pw(K) as

µ̂ϕ(B × C) :=

∫

B
ϕ(C|x)µϕ(dx) ∀B ∈ B(X), C ∈ B(A).

The set of all of these measures is denoted by Γ, i.e.,

Γ := {µ̂ϕ : ϕ ∈ Φ} ⊂ Pw(K)(25)

Moreover, for each θ ∈ (θmin, θmax), with θmin and θmax as in (9), let

Γ(θ) := {µ̂ ∈ Γ :

∫

K

c dµ̂ ≤ θ}.(26)

It can be verified that Γ and Γ(θ) are both convex sets. Furthermore, after some calculations
(see [17, Lemma 5.2.2] for details) and using Prohorov’s theorem [8, Appendix A.5] it follows
that Γ and Γ(θ) are both compact sets in the w-weak topology.

For each Λ ≤ 0 let rΛ(x, a) := r(x, a) + (c(x, a)− θ) ·Λ. Then, given a stationary policy
ϕ ∈ Φ, define

GΛ(ϕ) := µ̂ϕ(rΛ).(27)
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On the other hand, by our continuity and compactness conditions in Assumptions 2.2
and 2.6, well-known measurable selection theorems (see [12, Appendix D], for instance) give
the existence of a stationary deterministic policy fΛ ∈ F (not necessarily unique) such that
for every x ∈ X, the action fΛ(x) ∈ A(x) attains the maximum in the right-hand side of
(16). By the Axiom of Choice, for each Λ ≤ 0, we take one from those fΛ.

Remark 4.5 By standard dynamic programming results (see, for instance, [13, Section
10.3]), the function Λ 7→ ρ(Λ) = GΛ(fΛ) is well defined and it does not depend on the
particular choice of fΛ. Furthermore, Let ϕ ∈ Φ be arbitrary, then (16) implies

ρ(Λ) + hΛ(x) ≥ rϕ(x) + (cϕ(x) − θ) · Λ +

∫

X

hΛ(y)Qϕ(dy|x)

for all x ∈ X. Integrating both sides of this inequality with respect to µϕ, we have

ρ(Λ) ≥ GΛ(ϕ) ∀ϕ ∈ Φ.(28)

Next, we introduce

γ := sup{Λ ≤ 0 : gc(fΛ) ≤ θ}.(29)

According to Lemma 5.2 below, γ defined in (29) is finite. Notice that −∞ < γ ≤ 0.

Proposition 3.2 establishes the existence of an optimal policy for our CP. Our purpose
now is to use the parametric family of unconstrained optimization problems (16) to obtain
this optimal policy as a function of the parameter Λ (see Theorem 4.8 and Theorem 4.9
below).

We state the following assumptions.

Assumption 4.6 The cost function c is continuous on K.

Assumption 4.7 Let γ be defined in (29). We assume

−∞ < γ < 0.

Theorem 4.8 Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are satisfied.

(a) Suppose that there exists Λ ≤ 0 and ϕ̂ ∈ Φ satisfying

gc(ϕ̂) = θ and GΛ(ϕ̂) = ρ(Λ).(30)

Then ϕ̂ is an optimal policy for the CP. Hence,

ρ(Λ) = min
λ≤0

ρ(λ) = V (θ).(31)

Moreover, if gc(fΛ) = θ (with fΛ as in Remark 4.5), then fΛ solves the CP.
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(b) Assume that Λ 7→ ρ(Λ) is differentiable at some point Λ < 0. Then

dρ

dΛ
(Λ) = gc(fΛ) − θ.(32)

In particular, if Λ < 0 is a critical point of ρ(·), then fΛ is an optimal policy for the
CP, and ρ(·) attains a minimum in Λ satisfying (31).

(c) Let us suppose that there exists Λ < 0 such that ρ(·) is differentiable at Λ. Then the
following statements are equivalent:

1) fΛ solves the CP;

2) Λ is a critical point of ρ(·);
3) gc(fΛ) = θ.

(d) In addition, assume that the mapping Λ 7→ gc(fΛ) is continuous on the interval (−∞, 0).
Then the function ρ(·) is differentiable on the interval (−∞, 0).

Recall the definition (29) of γ, which is used again in the following theorem.

Theorem 4.9 Suppose that Assumptions 2.2, 2.3, 2.5, 2.6, 4.6, and 4.7 hold. Then there
exist two sequences of negative numbers {Λn}, {Λν} such that Λn ↑ γ, and Λν ↓ γ satisfying:

(i) The corresponding sequences of measures {µ̂fΛn

} and {µ̂fΛν

} converge on Pw(K), with
respect to the w-weak topology, toward measures µ̂ϕ1

and µ̂ϕ2
in Γ, with ϕ1, ϕ2 ∈ Φ

such that
gc(ϕ1) ≤ θ and gc(ϕ2) ≥ θ,(33)

and
Gγ(ϕ1) = Gγ(ϕ2) = ρ(γ).(34)

(ii) There exist a randomized stationary policy ϕ∗ ∈ Φ, and a number q0 ∈ [0, 1] such that

µ̂ϕ∗ = q0µ̂ϕ1
+ (1 − q0)µ̂ϕ2

and gc(ϕ
∗) = θ.

Hence, the policy ϕ∗ ∈ Φ is optimal for the CP. Moreover, the function Λ 7→ ρ(Λ)
attain a minimum in γ, i.e.,

ρ(γ) = min
Λ≤0

ρ(Λ) = V (θ).

(iii) In addition, suppose that ρ(·) is differentiable at γ. Then fγ solves the CP. In partic-
ular, γ is a critical point of ρ(·), and gc(fγ) = θ. In this case, we can identify Λ0 in
Proposition 3.2 with γ < 0.

(iv) If we suppose that Assumption 4.7 does not hold, then ϕ1 ∈ Φ satisfying (33) and (34)
for γ = 0, is an optimal policy for the CP. In particular, if gc(f0) ≤ θ, then f0 is an
optimal policy for the CP.
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5 Proof of Theorems 4.3, 4.8, 4.9

Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 hold throughout this section.

Proof of Theorem 4.3. Proof of (a). The inequality in (22) follows from the proof of
Theorem 3.4(i) in [18].

Now, suppose that ϕ̂ is an optimal policy for the ECP (10)-(11). By (15) and Remark
2.4, we have

g(ϕ̂) = V (θ) and gc(ϕ̂) ≤ θ.(35)

From Remark 2.4(iv) in [18], together with (22) and (35), we have that ϕ̂ is optimal for the
pathwise CP (18)-(19), and V (θ) is the optimal value, that is, V (θ) = V ∗(θ).

Proof of (b). Let ϕ̂ be an optimal policy for the pathwise CP (18)-(19). By part (a) of
this theorem, V (θ) is the optimal value for the pathwise CP. Thus

g(ϕ̂) = V (θ) and gc(ϕ̂) ≤ θ.(36)

Furthermore, by Remark 2.4 again,

J(ϕ̂, x) = V (θ) and Jc(ϕ̂, x) ≤ θ ∀x ∈ X.

So, ϕ̂ is also an optimal policy for the ECP (10)-(11). Hence, the rest of the proof of part
(b) is the same as the proof of Theorem 5.2(ii) in [18].

Finally, the proof of part (c) is very similar as the proof of (b) above.

To prove Theorems 4.8 and 4.9, we need the following lemmas.

Lemma 5.1 For each Λ ≤ 0 and every real number η such that Λ + η ≤ 0, the following
inequalities hold

η · [gc(fΛ) − θ] = GΛ+η(fΛ) − ρ(Λ)

≤ ρ(Λ + η) − ρ(Λ)

≤ ρ(Λ + η) − GΛ(fΛ+η)

= η · [gc(fΛ+η) − θ].(37)

As a consequence of these inequalities we have the following facts:

(i) gc(fΛ) and g(fΛ) are monotone nondecreasing functions in the parameter Λ.

(ii) If gc(fΛ) ≤ θ, then ρ(·) is monotone nonincreasing on the interval (−∞, Λ]. If gc(fΛ) ≥
θ, then ρ(·) is monotone nondecreasing on the interval [Λ, 0].

(iii) ρ(·) is continuous in Λ ≤ 0.
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Proof. Consider Λ ≤ 0 and a real number η such that Λ + η ≤ 0. By the AROE (16),
with Λ + η in lieu of Λ, we obtain

ρ(Λ + η) + hΛ+η(x) ≥ rΛ(x, a) + (c(x, a) − θ) · η +

∫

X
hΛ+η(y)Q(dy|x, a)

for all (x, a) ∈ K. Hence,

ρ(Λ + η) + hΛ+η(x) ≥ rΛ(x, fΛ(x)) + (c(x, fΛ(x)) − θ) · η +

∫

X
hΛ+η(y)Q(dy|x, fΛ(x))

for all x ∈ X. Integrating both sides of this inequality with respect to the measure µfΛ
, we

obtain
ρ(Λ + η) ≥ ρ(Λ) + (gc(fΛ) − θ) · η = GΛ+η(fΛ).(38)

Now, from (28) in Remark 4.5, we have

ρ(Λ) ≥ GΛ(fΛ+η).(39)

Moreover

ρ(Λ + η) − GΛ(fΛ+η) = GΛ+η(fΛ+η) − GΛ(fΛ+η) = (gc(fΛ+η) − θ) · η.(40)

Combining (38), (39) and (40), we obtain the inequalities in (37).

Proof of (i)-(iii). From (37), we have that gc(fΛ) is nondecreasing in the parameter Λ.
On the other hand, from the first inequality in (37), we have that if gc(fΛ) ≤ θ and

η < 0, then 0 ≤ η · [gc(fΛ) − θ] ≤ ρ(Λ + η) − ρ(Λ). This implies that ρ(·) is nonincreasing
on (−∞, Λ). Similarly, if gc(fΛ) ≥ θ and η > 0, by the same inequality we have that
ρ(Λ) ≤ ρ(Λ + η) with η > 0, i.e., ρ(·) is nondecreasing on [Λ, 0]. Thus, we have proved the
assertions in (ii).

Next, we prove that g(fΛ) is nondecreasing. Arguing by contradiction, suppose that
g(fΛ) is not monotone nondecreasing. Hence, there exist Λ ≤ 0 and η < 0 such that
g(fΛ) < g(fΛ+η). By the first part of (i), gc(fΛ) is nondecreasing. So, gc(fΛ+η) ≤ gc(fΛ).
Thus, we have the contradiction (see (39) above)

ρ(Λ) = g(fΛ) + (gc(fΛ) − θ) · Λ < g(fΛ+η) + (gc(fΛ+η) − θ) · Λ = GΛ(fΛ+η).

Finally, the statement in (iii) is a direct consequence of (37).

The following lemma proves that γ defined in (29) is a finite number.

Lemma 5.2 There exists Λ ≤ 0 such that gc(fΛ) ≤ θ. Moreover, we have

(a) γ is a finite number such that −∞ < γ ≤ 0.

(b) Consider Λ < 0. If Λ < γ, then gc(fΛ) ≤ θ. If Λ > γ, then gc(fΛ) > θ.

(c) ρ(γ) = minΛ≤0 ρ(Λ) = V (θ).
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Proof. By contradiction, assume that gc(fΛ) > θ for all Λ ≤ 0. From Lemma 5.1(i),
g(fΛ) is nondecreasing. Thus

ρ(Λ) = g(fΛ) + (gc(fΛ) − θ) · Λ ≤ ρ(0) ∀Λ ≤ 0.(41)

On the other hand, from the definition of θmin in (8) and θ in (9), there exists ϕ ∈ Φ such
that gc(ϕ) < θ. Defining δ := θ − gc(ϕ) > 0, we have that

GΛ(ϕ) = g(ϕ) + (gc(ϕ) − θ) · Λ = g(ϕ) − δ · Λ ∀Λ ≤ 0.

Hence, limΛ→−∞ GΛ(ϕ) = ∞. This limit and (28) in Remark 4.5 imply the existence of
Λ < 0 such that

ρ(0) < GΛ(ϕ) ≤ ρ(Λ),

which contradicts (41).
Proof of (a). From the first part of this proof and the definition of γ in (29), we have

that −∞ < γ ≤ 0.
Proof of (b). This part follows from the definition of γ in (29), and the fact that gc(fΛ)

is nondecreasing in the parameter Λ ≤ 0 (see Lemma 5.1(i)).
Proof of (c). From part (b) of this lemma, and Lemma 5.1(ii)-(iii), we have that

ρ(Λ) ≥ ρ(γ) ∀Λ < γ,

and
ρ(Λ) ≥ ρ(γ) ∀Λ > γ.

These inequalities imply that ρ(γ) = minΛ≤0 ρ(Λ). Furthermore, from Proposition 3.3,
V (θ) = ρ(γ).

Proof of Theorem 4.8. Proof of (a). Let Λ ≤ 0 and ϕ̂ ∈ Φ satisfy (30). In particular,
ϕ̂ is a feasible policy for the ECP (10)-(11), and by (28) it follows that

g(ϕ̂) = GΛ(ϕ̂) = ρ(Λ) ≥ GΛ(ϕ) ∀ϕ ∈ Φ.

Since GΛ(ϕ) ≥ g(ϕ) for each feasible policy ϕ ∈ Φ for the CP (10)-(11), Proposition 3.2
and the latter inequality imply that ϕ̂ is an optimal policy for the CP. Now, from (17) in
Proposition 3.3, V (θ) = ρ(Λ) = minλ≤0 ρ(λ).

In particular, if gc(fΛ) = θ, since ρ(Λ) = GΛ(fΛ), then fΛ is an optimal policy for the CP.

Proof of (b). Assuming that ρ(·) is differentiable at Λ < 0, from the first inequality in
(37) we obtain, for each η > 0,

gc(fΛ) − θ ≤ ρ(Λ + η) − ρ(Λ)

η
,

and

gc(fΛ) − θ ≥ ρ(Λ − η) − ρ(Λ)

−η
.
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Taking the limit as η → 0, we obtain (32).

On the other hand, if Λ < 0 is a critical point of ρ(·), then, from (32), we have that
gc(fΛ) = θ. Hence, from part (a) above, fΛ solves the CP.

Proof of (c). This part is a direct consequence of parts (a) and (b) of this theorem.

Proof of (d). Suppose that the function Λ 7→ gc(fΛ) is continuous on the interval
(−∞, 0). From (37) in Lemma 5.1, we obtain that the continuous function Λ 7→ ρ(Λ) is
differentiable with continuous derivative

dρ

dΛ
(Λ) = gc(fΛ) − θ, ∀Λ < 0.

Proof of Theorem 4.9. Proof of (i). From Assumption 4.7, we can consider two
sequences of negative numbers {Λn} and {Λν} satisfying Λn ↑ γ and Λν ↓ γ. Now, since Γ
is a compact (separable) metric space with respect to the w-weak topology [8, Appendix
5], each sequence in Γ has a subsequence which converges in Γ. Thus, we can assume that
the sequences {µ̂fΛn

} and {µ̂fΛν

} converge in Pw(K) with respect to the w-weak topology,
to some measures µ̂ϕ1

and µ̂ϕ2
in Γ, with ϕ1, ϕ2 ∈ Φ.

From Lemma 5.2(b), we have that gc(fΛn
) ≤ θ for all n, and gc(fΛν

) > θ for all ν. By
Assumption 4.6, the cost function c is continuous on K, and so gc(ϕ1) = limn→∞ gc(fΛn

) ≤ θ
and gc(ϕ2) = limν→∞ gc(fΛν

) ≥ θ, obtaining (33).

Next we prove (34). From the upper semicontinuity of r (see Assumption 2.6(c)), and
the continuity of c, we have that rγ := r + (c − θ) · γ is upper semicontinuous on K. Thus,
the mapping µ̂ 7→

∫
K

rγ dµ̂ ∈ R on Pw(K) is u.s.c. on Pw(K) with respect to the w-weak
topology (see, for instance, [17, Lemma 5.2.5]). Now, since {µ̂fΛn

} converges to the measure
µ̂ϕ1

,

lim sup
n→∞

Gγ(fΛn
) = lim sup

n→∞
µ̂fΛn

(rγ) ≤ µ̂ϕ1
(rγ) = Gγ(ϕ1).(42)

By Assumption 2.2(b1), combined with (7) in Remark 2.4, the definition of θmin and
θmax in (8), and (37) in Lemma 5.1, we see that

(Λn − γ) · [gc(fγ) − θ] ≤ ρ(Λn) − Gγ(fΛn
) ≤ (Λn − γ) · [θmin − θ].

Thus,

lim
n→∞

[ρ(Λn) − Gγ(fΛn
)] = 0.(43)

Since ρ(·) is continuous, (43) implies the limit ρ(γ) = limn→∞ Gγ(fΛn
). Hence, (42) yields

that ρ(γ) ≤ Gγ(ϕ1). On the other hand, the inequality in (28) gives Gγ(ϕ1) ≤ ρ(γ). There-
fore ρ(γ) = Gγ(ϕ1). In a similar way we can prove that ρ(γ) = Gγ(ϕ2).

Proof of (ii). The function

q 7→ qgc(ϕ1) + (1 − q)gc(ϕ2) = (qµ̂ϕ1
+ (1 − q)µ̂ϕ2

)(c) ∀q ∈ R
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is continuous on R. By (33), there exists q0 ∈ [0, 1] such that q0gc(ϕ1)+ (1− q0)gc(ϕ2) = θ.
On the other hand, since Γ is a convex set we have that q0µ̂ϕ1

+ (1 − q0)µ̂ϕ2
∈ Γ. Hence,

there exist ϕ∗ such that

µ̂ϕ∗ = q0µ̂ϕ1
+ (1 − q0)µ̂ϕ2

.(44)

Thus,

gc(ϕ
∗) = µ̂ϕ∗(c) = θ.(45)

From (34) we have

Gγ(ϕ∗) = µ̂ϕ∗(rγ) = q0Gγ(ϕ1) + (1 − q0)Gγ(ϕ2) = ρ(γ).(46)

Hence, by (45) and (46), it follows that ϕ∗ satisfies (30) in Theorem 4.8. Therefore, ϕ∗ is an
optimal policy for the CP. Furthermore, from Lemma 5.2(c) or by Theorem 4.8, we obtain
that V (θ) = ρ(γ) = minΛ≤0 ρ(Λ).

Proof of (iii). Assume that ρ(·) is differentiable at γ. From part (ii) of this theorem,
ρ(·) attains a minimum in γ < 0. Hence, γ is a critical point of ρ(·). From Theorem 4.8(b),
gc(fγ) = θ and fγ solves the CP.

Proof of (iv). If Assumption 4.7 fails to hold then from Lemma 5.2(a) we obtain that
γ = 0. By Lemma 5.1(ii), ρ(·) is nonincreasing on the interval (−∞, 0], thus

ρ(0) = min
Λ≤0

ρ(Λ) = V (θ).(47)

In a similar way as in the proof of part (i) above, there exists ϕ1 ∈ Φ such that

gc(ϕ1) ≤ θ and G0(ϕ1) = ρ(0).(48)

Hence, noting that g(ϕ1) = G0(ϕ1), from (47) and (48), we have that

gc(ϕ1) ≤ θ and g(ϕ1) = V (θ).

Then, ϕ1 is an optimal policy for the CP.

Finally, if gc(f0) ≤ θ, f0 is an admisible policy for the ECP (10)-(11). From (47),
g(f0) = ρ(0) = minΛ≤0 ρ(Λ) = V (θ), and so f0 is an optimal policy for the CP.

6 A LQ system

In this section we present a Linear-Quadratic system that satisfies all the hypotheses of
Theorems 4.8 and 4.9.

Consider the linear system

xt+1 = k1xt + k2at + zt, t = 0, 1, · · · ,(49)
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with state space X := R and positive coefficients k1, k2. The control set is A := R, and the
set of admisible controls in each state x is the interval

A(x) := [−k1|x|/k2, k1|x|/k2].(50)

The disturbances zt in (49) are i.i.d. random variables with values in Z := R, and have
zero mean and finite variance, that is,

E(zt) = 0 and σ2 := E(z2
t ) < ∞.(51)

To complete the description of our constrained control model we introduce the quadratic
reward-per-stage function

r(x, a) := e − (r1x
2 + r2a

2) ∀(x, a) ∈ K,(52)

with positive coefficients e, r1, and r2, and the cost-per-stage function

c(x, a) := c1x
2 + c2a

2 ∀(x, a) ∈ K,(53)

with positive coefficients c1, c2. We also define

W (x) := exp[ζ|x|] for all x ∈ X,(54)

with ζ ≥ 2. Moreover, let ŝ > 0 be such that

ζŝ < log(ζ/2 + 1)

which implies

β :=
2

ζ
(exp[ζŝ] − 1) < 1.

With this β, we have that Assumption 2.2(b3) holds. On the other hand, observe that r2, c2

are functions in BW (K), and W ≥ 1. Moreover, w :=
√

W is continuous on K and it is a
moment function on K. Hence, Assumptions 2.2, 2.5 and 2.6 hold.

As in [15, Section 5], we will suppose the following.

Assumption 6.1 0 < k1 < 1/2.

Assumption 6.2 The i.i.d. disturbances zt have a common density d, which is a con-
tinuous bounded function supported on the interval S := [−ŝ, ŝ]. Moreover, there exists a
positive number ε such that d(s) ≥ ε for all s ∈ S.

Let S0 := [0, ŝ], and let Υ be the Lebesgue measure on X = R. We define

l(x, a) := 1S0
(x) ∀(x, a) ∈ K, and ν(B) := εΥ(B ∩ S0) ∀B ∈ B(X).(55)

Then, we have that the LQ system (49)-(53) satisfies Lemmas 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9
in [18]. This yields the following.
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Proposition 6.3 Under the Assumptions 6.1 and 6.2, the LQ system (49)-(53) satisfies
the Assumptions 2.2, 2.3, 2.5, and 2.6.

Proposition 6.4 Suppose that Assumptions 6.1 and 6.2 hold. Then:

(i) The LQ system (49)-(53) has a constrained optimal policy. Moreover, for each Λ ≤ 0
let (ρ(Λ), hΛ) ∈ R × BW (X) be a solution to the AROE

hΛ(x) + ρ(Λ) = sup
a∈A(x)

[
rΛ(x, a) +

∫

X

hΛ(y)Q(dy|x, a)
]
,(56)

with rΛ(x, a) := r1(Λ)x2 + r2(Λ)a2 + b, where ri(Λ) := Λ · ci − ri < 0, i = 1, 2, and
b := e − Λ · θ, then the constrained optimal value V (θ) satisfies

V (θ) = min
Λ≤0

ρ(Λ).(57)

(ii) The function Λ 7→ ρ(Λ) is differentiable on the interval (−∞, 0) with

dρ

dΛ
(Λ) = gc(fΛ) − θ, ∀Λ < 0.

Furthermore, if Λ < 0, the following conditions are equivalents:

1) fΛ solves the CP;

2) Λ is a critical point of ρ(·);
3) gc(fΛ) = θ.

Thus, if Λ < 0 satisfies some of the contions 1), 2) or 3), ρ(·) attains a minimum in
Λ such that ρ(Λ) = V (θ) = minλ≤0 ρ(λ).

(iii) Assume that γ := sup{Λ ≤ 0 : gc(fΛ) ≤ θ} < 0, then ρ(·) attains a minimun in γ, and
so γ is a critical point of ρ(·). In this case, fγ satisfies gc(fγ) = θ and solves the CP.

(iv) If gc(f0) ≤ θ, then f0 is an optimal policy for the CP.

To prove Proposition 6.4 we need the following result which is a slight variation of
Lemma 6.5 in [11].

Lemma 6.5 Let f̂ be a constant, and let f ∈ F be a deterministic policy given by f(x) :=
−f̂x for all x ∈ X. Furthermore, let k̂ := k1−k2f̂ , where k1, k2 are the coefficients in (49).
Suppose that |k̂| < 1. Then, for all x ∈ X

g(f) = lim inf
n→∞

1

n
Ef

x

n−1∑

k=0

rf (xk) = e − (r1 + r2f̂
2)σ2/(1 − k̂2),(58)

and

gc(f) = lim sup
n→∞

1

n
Ef

x

n−1∑

k=0

cf (xk) = (c1 + c2f̂
2)σ2/(1 − k̂2).(59)

with r and c as defined in (52) and (53), respectively.
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Proof. Replacing at in (49) with at := f(xt) = −f̂xt, we obtain

xt = (k1 − k2f̂)xt−1 + zt−1 = k̂xt−1 + zt−1 ∀t = 1, 2, · · · .

By an induction procedure, for all t = 1, 2, · · ·,

xt = k̂tx0 +
t−1∑

j=0

k̂jzt−1−j .

From this relation, we obtain

Ef
x (x2

t ) = k̂2tx2 + σ2(1 − k̂2t)/(1 − k̂2).

This yields that

lim sup
n→∞

1

n

n−1∑

t=0

Ef
x (x2

t ) = lim inf
n→∞

1

n

n−1∑

t=0

Ef
x (x2

t ) = σ2/(1 − k̂2).(60)

Since a = f(x) = −f̂x, we obtain

rf (x) = e − (r1 + r2f̂
2)x2 and cf (x) = (c1 + c2f̂

2)x2(61)

for all x ∈ X. Finally, inserting (60) in (61) we obtain (58) and (59).

Proof of Proposition 6.4. Proof of (i) From Proposition 6.3, the assumptions in
Propositions 3.2, 3.3, and Theorem 4.3 are satisfied. Hence, the stated result in (i) follows
from these results.

Proof of (ii). In [15, Section 5] it is proved, under the Assumptions 6.1 and 6.2, that
ρ(Λ) in the AROE (56) has the form

ρ(Λ) = b − v0(Λ)σ2,(62)

with σ as in (51), and v0(Λ) is the unique positive solution to the quadratic (so-called
Riccati) equation

k2
2v0(Λ)2 + [k2

2r1(Λ) + k2
1r2(Λ) − r2(Λ)]v0(Λ) − r1(Λ)r2(Λ) = 0.(63)

Hence, from the fact that ri(Λ) < 0, for i = 1, 2, we have that v0(Λ) is strictly positive, and
depends continuously on Λ. Moreover, we define, for all x ∈ X

fΛ(x) := −f̂0(Λ)x, with f̂0(Λ) := (k2
2v0(Λ) − r2(Λ))−1k1k2v0(Λ).(64)

and
hΛ(x) := −v0(Λ)x2.(65)

Notice that f̂0(Λ) depends continuously on the parameter Λ. Since r2(Λ) < 0, we have
|fΛ(x)| ≤ k1/k2|x|. Therefore fΛ(x) ∈ A(x) for all x ∈ X, that is, fΛ is in F. Then, by
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a direct calculation we can show that (hΛ, fΛ, ρ(Λ)) is a canonical triplet that satisfies the
AROE (56).

On the other hand, by (59) in Lemma 6.5, we obtain that

gc(fΛ) = (c1 + c2f̂0(Λ)2)σ2/(1 − k̂(Λ)2).

with k̂(Λ) := k1 − k2f̂0(Λ). From Assumption 6.1 it follows that |k̂(Λ)| < 1. Thus, gc(fΛ)
is continuous on the parameter Λ on the interval (−∞, 0). By Theorem 4.8(b), (d), ρ(·) is
differentiable on the interval (−∞, 0) with continuous derivative

dρ

dΛ
(Λ) = gc(fΛ) − θ, ∀Λ < 0.

The rest of the statements in part (ii) are direct consequences of Theorem 4.8(a), (c).

Proof of (iii). This part follows from Theorem 4.9(iii).

Proof of (iv). This part follows from Theorem 4.9(iv).

Case 1. Now we analyse a particular case in which the reward-per-stage function (52)
and the cost-per-stage function (53) satisfy r1 = r2 and c1 = c2, respectively, and k2 = 1 in
(49). For this case, we will find the optimal value and the optimal policy for the LQ model
above, with expected and pathwise constraints.

Note that

r1(Λ) = r2(Λ) ∀Λ ≤ 0.(66)

By (66), the positive solution of (63) is

v0(Λ) = −kr1(Λ) with k =
k2

1 +
√

k4
1 + 4

2
.(67)

Inserting these values in (62) and using the definition of the constant b, we obtain the
explicit form of ρ(Λ)

ρ(Λ) = e − (σ2k) · r1 + [(σ2k) · c1 − θ]Λ(68)

which is the equation of a straigth line with slope (σ2k) · c1 − θ. Because we need to choose
θ satisfying the relation (57), then we will impose the following assumption:

(σ2k) · c1 < θ.(69)

Under this condition, we have that

V (θ) = min
Λ≤0

ρ(Λ)

= min
Λ≤0

(
e − (σ2k) · r1 + [(σ2k) · c1 − θ]Λ

)

= e − (σ2k) · r1 = ρ(0).(70)
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Thus, the minimun is attained at Λ = 0, and V (θ) = ρ(0). Furthermore, inserting Λ = 0 in
(64) and (65), we obtain

f0(x) = −f̂0x with f̂0 :=
kk1

1 + k
,(71)

for all x ∈ X.
Recalling that r1 = r2 and c1 = c2, k2 = 1, we have that |k̂| = k1/(1 + k) < 1, with

k̂ := k1 − f̂0 and k as in (67). By (59) in Lemma 6.5, a direct calculation yields that
gc(f0) = (σ2k)c1. Hence, from (69) and by Proposition 6.4(iv), we have that f0 is and op-
timal policy for the CP. Finally, by (58) in Lemma 6.5, we obtain that g(f0) = e− (σ2k)r1,
which coincides with the value of V (θ) in (70).

Case 2. Consider the LQ system (49)-(53) with the following numerical special case.
Suppose that the reward-per-stage function (52) and the cost-per-stage function (53) satisfy
r1 = 1, r2 = 2, e = 10, and c1 = c2 = 1, respectively. Moreover, assume that k1 = 1/3,
k2 = 1 in (49), θ := 191/180 and σ2 = 1 in (51).

In this particular case, solving the Riccati equation (63), and inserting the corresponding
value in (62), we obtain

ρ(Λ) =
(
187 − 18.1Λ −

√
325Λ2 − 958Λ + 697

)
/18 ∀Λ ≤ 0.(72)

We consider the critical points of ρ(·). Then, we obtain the unique negative critical point

Λ0 = −0.38767819 · · · .

By Proposition 6.4(ii), fΛ0
solves the CP. Moreover, ρ(·) attaints its minimum value, which

is also the optimal value for the constrained problem, that is

V (θ) = ρ(Λ0) = 8.921767464 · · · , with θ = 191/180.

In addition
v0 ≡ v0(Λ0) = 1.48960217 · · · .

By (64) and (65), we have that

fΛ0
(x) = −f̂0x ∀x ∈ R, with f̂0 = 0.12806246 · · · .

and
h(x) ≡ hΛ0

(x) = −v0x
2.

By a straigthforward calculation, we can check that (V (θ), fΛ0
, h) is a canonical triplet

that satisfies the AROE (12) in Proposition 3.2. On the other hand, Proposition 6.4(ii)
establishes that g(fΛ0

) = V (θ) and gc(fΛ0
) = θ. We can verify the latter equalities from

Lemma 6.5. Indeed, by a direct calculation, we obtain

g(fΛ0
) = 8.9217674 · · · and gc(fΛ0

) = 1.061111 · · · = 191/180.

So, the constrained problem is solved.
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Remark 6.6 Proposition 6.4(ii)-(iii), give us different methods to obtain fΛ that solves the
constrained problem. For example, we can find Λ0 in the case 2 above, as the root of the
equation

gc(fΛ) = θ,

which can be easily verified.
Another way is calculating the constant γ = sup{Λ ≤ 0 : gc(fΛ) ≤ θ} ≤ 0. If γ < 0,

then fγ solves the CP.
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