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Resumen

Este trabajo lidia con juegos diferenciales estocasticos (JDEs) de dos personas y suma—cero. Estudiamos la existen-
cia de funciones de valor y puntos silla para estos juegos con varios criterios de pago en horizonte infinito.

A lo largo de nuestra tesis usaremos un muy importante resultado que involucra intercambios de limites en
una sucesién de problemas de Dirichlet de tipo eliptico. Esto nos permitira:

e Probar la existencia de (i) funciones de valor y (ii) puntos silla para JDEs con pagos descontados en horizonte
infinito.

e Invocar la técnica del descuento desvaneciente y el algoritmo de iteracién de politicas (AIP) para caracterizar
el valor y los equilibrios de un JDE con pago ergédico.

e Estudiar criterios avanzados de optimalidad basdndonos en la bisqueda de equilibrios ergédicos.
Aqui algunas de nuestras contribuciones.

e Damos condiciones suficientes que garantizan la existencia de equilibrios de Nash para cada criterio consid-
erado.

e Caracterizaremos la funcién de valor de un JDE de suma cero como la solucién de cierta ecuacién de Isaacs
y daremos condiciones suaves bajo las cuales, tal funcién satisface la ecuacién de programacién dindmica en
el sentido clésico.

e También presentamos una extension de los resultados en [32]33] 190, 91] al caso de JDEs con tasa de descuento
aleatoria.

e Proponemos una extensién del AIP para JDEs de suma cero con pagos ergodicos.

e Damos una caracterizacién de los equilibrios llamados de sesgo y rebasantes.
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Abstract

This work is about two-person zero—-sum stochastic differential games (SDGs). We study the existence of values
and saddle points for these games with several infinite-horizon payoff criteria.

Throughout our thesis we shall use an important result that involves interchanging limits in a sequence of
Dirichlet problems of elliptic type. This will allow us to:

e Prove the existence of both, (i) value functions and (ii) saddle points for SDGs with discounted payoffs in
infinite—horizon.

e Invoke the vanishing discount technique and the policy iteration algorithm (PIA) to find the value and saddle
points of a SDG with ergodic payoff.

e Study advanced optimality criteria based on the search of ergodic equilibria.
Here are some of our contributions.
e We give conditions ensuring the existence of Nash equilibria for each criterion under consideration.

e We characterize the value function of a zero—sum SDG as the solution of certain Isaacs’ equation and provide
mild conditions under which, such function satisfies the dynamic programming equation in the classical
sense.

We also present an extension of the results in [32,[33,[90,[91] to the case of SDGs with random rate of discount.

We propose an extension of the PIA for zero—sum SDGs with ergodic payoffs.

We provide a characterization of bias and overtaking equilibria.
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Chapter 1

Introduction

Dynamic games can be classiffied according to the system itself (for instance, we can have deterministic or stochas-
tic systems) and/or by their performance criteria (for instance, total, discounted or ergodic payoff criterion). Games
can also be classiffied according to their rules. For instance, cooperative and noncooperative games; among this last
category, we can find the well-known zero and nonzero sum games. In this work we deal with several infinite—
horizon zero—sum dynamic games for a general class of Markov diffusion processes, which we will refer to as
stochastic differential games (SDGs). Indeed, our main objective is to give conditions for the existence, character-
ization, and search of saddle points for four different types of infinite-horizon criteria, which we classify as basic
and advanced.

The basic criteria we shall study in this thesis are the expected discounted payoff and the long—run expected
average (or ergodic) payoff in a zero-sum game. These two criteria have complementary aims; while the former
focuses on early periods of the time horizon, the latter concerns only asymptotic behaviors, and it does not take
into account optimality for finite intervals. To overcome these two extremal situations we consider other optimal-
ity criteria which are more selective, and can be seen as “refinements” of the average payoff criterion. They are
so-named because they concern policies that optimize, for each player, the average payoff but in addition they
have some other convenient features. In this work, we shall study some of these refinements, namely bias and
overtaking equilibria.

Throughout our thesis we shall use an important result that involves interchanging limits in a sequence of
Dirichlet problems of elliptic type. This will allow us to:

e Prove the existence of both, (i) value functions and (ii) saddle points for SDGs with discounted payoffs in
infinite-horizon (for a precise definition of these concepts, see, for instance, Sections and [4.1.3).

e Invoke the vanishing discount technique and the policy iteration algorithm to find the value and saddle
points of a SDG with ergodic payoff (see Chapter[p).

e Study advanced optimality criteria based on the search of ergodic equilibria (see Chapter 7).

We acknowledge the great influence of professors Arapostathis, Borkar and Ghosh [3} 4, 5]; Guo, Hernadndez-
Lerma, Jasso-Fuentes, Lasserre and Mendoza-Pérez [23] 24, 38, 139, 40, 44), 45), 46| |47, 50, 51}, 52} 53}, 54], [68]]; and
Gilbarg and Trudinger [36] for inspiring and motivating our ideas.

1.1 Related literature
There are several sources for studying the basics on stochastic games. In our present case, we have used [50]. As
for SDGs, we could refer to Hamadéne and Lepeltier’s works (e.g. [41]). They focus on several properties of a

backward stochastic differential equation (SDE) and they use some Girsanov-like results to find value functions.

As for the literature on the basic criteria, the discounted payoff criterion for SDGs has been analyzed in Ben-
soussan and Frehse [9], Fujita and Morimoto [29], Swiech [92] and Kushner (see, for instance, [62]). The controlled
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version of this problem has been studied for many classes of systems. For non—degenerate diffusion processes
we refer to Kushner [60], in which the drift of the diffusion is linear in the control variable. More recent works
concerning nondegenerate diffusion processes are Arapostathis et al [4] and Borkar [15]. All these works assume
boundedness from below of the cost rate. Other works include that by Guo and Herndndez-Lerma [38], which
considers a continuous-time controlled Markov chain with a countable state space; some more general control
Markov processes are studied in Herndndez-Lerma [44], and Prieto-Rumeau and Herndndez-Lerma [79].

On the other hand, the controlled version of the random discount problem has been studied, for discrete-time
systems with denumerable state space, in the works by Gonzalez-Herndndez, Lépez-Martinez, Pérez-Hernandez
and Minjdrez-Sosa (see [32] [33]], and the references therein). Jasso-Fuentes and Yin [55] and Ghosh, Arapostathis
and Marcus [4] studied the discounted payoff criterion for controlled switching diffusions and we borrow some
of their ideas on the form of the corresponding Bellman equation of the problem we present. Song, Yin and Zhang
[90, 91]] analyzed SDGs similar to those we present here.

Regarding average payoff games, Borkar and Ghosh [18], Kushner [63], and Morimoto and Ohashi [70] have
already studied the ergodic payoff criterion for SDGs. For control problems with this criterion, one of the earliest
works was the paper by Kushner [61]. He used dynamic programming to study a class of diffusions with bounded
coefficients with additive structure. Borkar and Ghosh [16] [17] worked in a similar context but approaching the
problem by using occupation measures. The unbounded case for control problems has been studied by Arapos-
tathis et al. [3,/4], and also by Ghosh, Arapostathis and Marcus [31] for switching diffusions, except that the cost
rate is supposed to be bounded below.

Overtaking optimality, which we study in Chapter[7] was introduced in the context of economic growth prob-
lems by Frank P. Ramsey in 1928 [83]. However, its present weaker form was introduced by H. Atsumi [6] and
C.C. von Weizsidcker [95] in 1965 for another class of economic problems. Later on, this sort of optimality was
used in many papers on Markov decision processes and control theory. Overtaking equilibria were introduced at
the same time by Brock [19] in the theory of differential games, and by Rubinstein [86] for repeated games. For
discrete and continuous-time games, overtaking equilibria have been obtained for several particular classes of
deterministic and stochastic games, see, for instance, the works by Carlson [20] 21] and Nowak [75]. The existence
of an overtaking optimal policy is a subtle issue, and there are counterexamples showing that one has to be care-
ful when making statements on overtaking optimality; see, for instance, Nowak and Vega-Amaya [76] and the
Remark 10.9.2 in Herndndez-Lerma and Lasserre [45]. The bias optimality criterion for stochastic discrete—time
Markov games was implicity introduced in Nowak [73, [74]. Prieto-Rumeau and Herndndez-Lerma [78] studied
these criteria for a continuous-time class of Markov games, whereas Jasso-Fuentes and Herndndez—-Lerma [52]
gave conditions for the existence of bias and overtaking optimal strategies for controlled diffusions.

The policy iteration algorithm we use for the ergodic payoff criteria is inspired in the controlled versions by
Herndndez-Lerma and Lasserre [46], Arapostathis [5], and by a finite game version developed by Hoffman and
Karp [48] modified by Van der Wal [94]. It is important to mention that the policy iteration algorithm is due to
Bellman [7], although some authors credit Howard [49] for its finding. It was later used by Fleming [26] to study
some finite horizon control problems in 1963. Bismut [13] and Puterman [81}82] studied similar problems.

1.2 Contributions and outline

Our thesis deals with two—person zero—sum stochastic differential games. We study the existence of values and
saddle points for these games with several infinite-horizon payoff criteria.

Our contributions are the following.

e We give conditions ensuring the existence of Nash equilibria for each criterion under consideration. A major
difference between our work and those by Elliott and Kalton (see, for instance [22]), is that they consider
that each player chooses his/her action regarding what the other player did in the past history, whereas we
assume that both players observe the state of the system and, independently from each other, choose their
actions.



e We characterize the value function of a zero-sum SDG as the solution of certain Isaacs” equation (see [26]
and [27]). A difference between our work and Fleming’s or Friedman'’s is that our hypotheses ensure the
existence of the value function in all of R™. An improvement with respect to, for instance, Swiech’s work
[92] or Hamadéne and Lepeltier’s [41]], is that our conditions on the coefficients of the diffusion are milder,
and the dynamic programming equation has a classical solution rather than a viscosity solution.

e We give conditions for the existence of classical solutions to the so—called Poisson equation by means of a
relaxation of the differentiability condition in [43] on the coefficients of the diffusion that drives the system
under study. This is also sufficient to ensure the existence of a bias function in the corresponding Isaacs’
equation.

e We extend the results of Gonzédlez-Hernandez et al. [32,[33] and Song et al. (see [90, 91]) to the case of SDGs
with random rate of discount. Mao and Yuan’s book [67] has been a great influence on this part of our work.

e We propose an extension of Fleming’s policy iteration algorithm [26] (see also [5] 94} 146} 48]) for zero—sum
SDGs with ergodic payoffs.

e We provide a characterization of bias and overtaking equilibria.
Our thesis is organized as follows.

In Chapter 2l we introduce the game we are interested in. We begin by introducing general conditions on the
game dynamics and the reward rate. We then present the family of admissible strategies, and a stability property
of the state and the action processes. We finally impose some conditions on the payoff rates.

Chapter [3|introduces Theorem 3.4} which is a crucial tool for many of our results.

The aim of Chapter []is to give sufficient conditions for the existence of a value function and a saddle point for
the infinite horizon game with discounted payoff. First, we work with a fixed discount factor, and then, we study
the random discount payoff criterion. In both cases we give hypotheses on the model and sufficient conditions to
ensure the existence of a value function and saddle points. In the case of the random discounted payoff criterion,
we provide an alternative version of Theorem [3.4; namely, Theorem [4.19}

Chapter f]is devoted to the average payoff case. To this end, we establish first some definitions associated with
the average payoff context. Next, we apply the well-known vanishing discount technique to ensure the existence
of both, the value of the game and average equilibria.

In Chapter [f| we continue to study the ergodic case by introducing a version of the policy iteration algorithm
(PIA) that transforms a given game problem into a control problem. We will refer to the policy convergence in the
sense of Schal [87, 88] to ensure the existence of saddle points for a SDG with average payoff. To be more precise,
in Section[6.1|we present the PIA, and then, in Section[6.2]we show that it converges in a suitable sense. See Lemma
[6.5land Theorem[6.7]

Chapter[/]addresses the existence of bias and overtaking equilibria. With this in mind, we characterize first the
bias problem as a new average payoff problem. We attain bias equilibria by means of the techniques of Chapter
applied to a new average problem. Besides, we show that there is a close relation between bias and overtaking
equilibria. We finish this chapter by introducing a modification of the PIA proposed in Chapter [f] to find bias
optimal strategies.

We conclude our work in Chapter [§| by presenting some general remarks. The rest of the thesis presents two
appendices: Appendix |A| contains some ancillary results that are basic for our developments and are quoted
several times along the thesis. Appendix[B|presents the proof of Theorem [3.4]and a sketch of the proof of Theorem
4.19]
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1.3 Notation

Some of our results require facts from the theory of partial differential equations. Here we will use the same type
of notation given in [1]] and [36]].

Given & := (..., ®n ) whose components are nonnegative integers, let |&| := Z{; ;. If ¢ is a smooth function,
we define the derivative of order & applied to ¢ as

%P

ox1 X7 --- a“"xn'

D% :=

The special case «; = 1 and «; = 0 for all j # i reduces D¢ to g ¢ the partial derivative of ¢ with respect to x;, in
which case we write 0y, $. If ¢ : R™ — R then V¢ and He represent the gradient vector of ¢ (i.e., the row vector

(0x, ), 1=1,2,..,n) and the Hessian matrix of ¢, i.e., Hp = ( X% d)), fori,j =1,...,n, respectively.
Let O be a subset of R™; k and p positive integers; and 0 < 3 < 1.

We will consider the following spaces.
e 3,,(Q) is a normed linear space of real-valued functions on Q) with finite w—norm. See Deﬁnition

e The space C*(Q) consists of all real-valued continuous functions ¢ on Q such that D¢, 0 < |&| < «, is
continuous as well. A particular case can be seen in Definition 2.2}

e C*P(Q) is the normed subspace of C*(Q) consisting of those functions f for which D%*f, 0 < |&] < «, satisfies
a Holder condition with exponent 3 €]0,1[ on x; € R, for i = 1,2,...,n. Particular cases can be seen in
Definitions[3.1]and Appendix

e LP(Q) is the Banach space consisting of all measurable functions f on Q for which

J [f(x)|Pdx < co.
Q

See Definition

e WP (Q) is the space of measurable functions ¢ in £P(Q) such that D*¢ is in LP(Q). Here 0 < |&| < k and
D*¢ stands for a weak (or distributional) derivative of ¢. Deﬁnitionis a particular case of this space.

Definition 1.1. The set Q) is said to be a domain if it is an open and connected subset of R™.

Definition 1.2. A bounded domain Q and its boundary dQ are said to be of class C“P for v > 0 and B € [0, 1], if for each
point xo € 00, there exists a ball B(xo) and a one—to—one mapping P, from B(xo) to D C R™ such that

(i) Py, (B(xo) N Q) CRT,
(ii) Yo (B(xo) N Q) C IR

(iii) Pxy € CHP(B(xo)) and (by,) ' € CHB(D).

Definition 1.3. Let X and Y be Banach spaces. We say that X is continuously imbedded in Y, which will be denoted as
X = Y, if X C Y and there exists a constant C such that ||x||y < C||x||x for every x € X. Moreover, we say that X is
compactly imbedded in Y if X < Y and, in addition, the unit ball in X is precompact in Y (or equivalently, every bounded
sequence in X has a subsequence that converges in Y).

Definition 1.4. Let X be a topological space. If there exists a complete separable metric space Y and a Borel subset B C Y
such that X is homeomorphic to B, then X is said to be a Borel space.

For vectors x and matrices A, we use the norms

Ix|? = Zx and |A]? :=Tr (AA’) ZAU,

i

where A" and Tr(-) denote the transpose of A = (A;;) and the trace of a square matrix, respectively.
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Chapter 2

The game model

This chapter introduces the SDG we are concerned with, as well as some important concepts.

We consider the n-dimensional process x(-) defined, for all t > 0, by
dx(t) =b (x(t), w1 (t),uz(t)) dt + o (x(t)) dAW(t) (2.1)
with initial condition x(0) = x, where b : R™ x U' x U? — R™ and o : R™ — R™ ™ are given functions, and W(-)
is an m~dimensional Wiener process. The sets U' and U? are called control (or action) spaces for the players 1 and

2, respectively. For { = 1,2, {ug(t) : t > 0} is a U'~valued stochastic process representing the (-player’s action at
each time t > 0.

Assumption 2.1. (a) The function b is continuous on R™ x U' x U? and there exists a positive constant Cy such that, for
each x and y in R™,
sup b (x,ur,uz) — b (y,ur,uz)| < Cilx —yl
(ur,uz)eU’ xuz

(b) There exists a positive constants C, such that for each x and y in R™,

lo(x) — o(y)l < Calx —yl,

(c) There exists a positive constant 'y such that the matrix a := oo’ satisfies:
x'a(y)x > yIxI? (uniform ellipticity), (2.2)
for each x € R™.
(d) The control sets U and U? are compact subsets of complete and separable vector normed spaces.
Definition 2.2. Let C*(R™) be the space of all real-valued continuous functions on R™ with continuous \—th partial deriva-
tiveinx; € R, fori =1,.,N, 1 =0,1,...k. In particular, when x = 0, C°(R™) stands for the space of real-valued

continuous functions on R™.

Recall the notation in Section[1.3] For (u7,1,) in U' x U? and hin C?(R™), let
1
L*"*2h(x) = (Vh(x),b(x,us,uz))+ ETr ([Hh(x)] a(x)]

Zb X, U1, U2) 05, h(x) Z ayj(x X 2 X, (2.3)

i=1 i,j=1

with a(-) as in Assumption 2.T]c).



2.1 Strategies

For each ¢ = 1,2, we denote by V! the space of probability measures on U’ endowed with the topology of weak
convergence. With this topology, and in view of Assumption d), it is well known that V* is a compact metric
set (see [10, Chapter 7.4], or [11, Chapter 1] for reference).

We borrow the following from Definition C.1 in [45].

Definition 2.3. Let X and Y be two Borel spaces (recall Definition[1.4). A stochastic kernel on X given Y is a function P(--)
such that:

(a) P(-ly) is a probability measure on X for each fixed y € Y, and
(b) P(BI-) is a measurable function on Y for each fixed Borel subset B C X.
The set of all stochastic kernels on X given Y is denoted as P (X|Y).
Next, we define the set of policies we are going to deal with.

Definition 2.4. For { = 1,2, a family of functions m* = {m{ : t > 0} is said to be a randomized Markov strategy for player
L if, for every t > 0, mt! is a stochastic kernel in P(UYR™). We denote the family of all randomized Markov strategies for
player ¢ = 1,2 as TIY, . Moreover, we say that ' € TI%,, € = 1,2, is a stationary strategy if there exists a stochastic kernel
©*(-I') € P(UYR™) such that mt(Alx) = @*(Alx) forall t > 0, A C Ut and x € R™. As an abuse of terminology, we shall
write ' (-|-) = mt(--) forall t > 0Oand ¢ = 1,2.

The family of all stationary strategies for player £ = 1,2 will be denoted as T1*. Note that TT* C TT¢, .

In a general context, discounted and average equilibria can be defined in terms of randomized Markov strate-
gies. However, we will focus on the space of stationary strategies because our hypotheses ensure the existence of
saddle points for the discounted and the ergodic criteria in this set (see Theorems and . Besides, this class
of policies is typically used for defining concepts such as positive recurrence, ergodicity, w—exponential ergodicity
(referred to in Assumption and bias of a pair of strategies (see and [23]52}[80]). In fact, as far as we can
tell, the latter objects are not even defined for nonstationary strategies.

When using randomized stationary strategies (7', 7?) in TT' x 12, we will write, for x € R™,

b(x,mt', %) = J

J b (3141, w2) 1 (dug ) (duahe). (2.4)
uz Ju?

For (@,1)) € V' x V2, we also introduce the notation
bl = | [ b ) eldubldu) 25)
uz Ju

Moreover, recalling 2.3), for h € C2(R™), let

L™ h(x) ::J J L2 h(x) ! (dug x)m (dualx). (2.6)
uzJu?
We also use
LOPh(x) = J J LU B ) (dun Wb sz,
uzJu?

for (@, ) € V! x V2.

Remark 2.5. A direct calculation yields that b(-, ¢, V) defined in @.5), has the corresponding Lipschitz property in As-
sumption a), that is, there exists a constant Cy such that

sup b (x, @, ) — b (y, @, V)| < Cilx —yl
(@, p)eVTIxV2



forall x,y € R™. Moreover, the Lipschitz conditions on b and o in Assumption a)—( b), along with the compactness of V!
and V? yield that there exists a constant C > Cy + Cy such that

sup  [b(x, @, )+ lo(x)| < C(1+[x])
(@, )EVI x V2

forallx € R™

Assumption[2.1|and Remark[2.5|ensure that, for each pair (n', 1) in TT' x TT?, the system (2.1) admits an almost
surely strong solution x(-) := {x(t) : t > 0}, which is a Markov-Feller process whose generator coincides with the

operator L™ h in [2.6). For more details, see [35, Theorem 2.1], [30, Theorem 3.1] and [85, Chapter II1.2]. To

emphasize the dependence on (r',72) € TT' x T12, sometimes we write x(-) as x™ " (-). Also, the corresponding
transition probability is

PE (4, B) = P (™ (1) € Bx™ 7 (0) = x)

for every Borel set B C R™ and t > 0. The associated conditional expectation is written as IEQ1 ().

2.2 Ergodicity assumptions

The following hypothesis is a standard Lyapunov stability condition for continuous time (controlled and uncon-
trolled) Markov processes.

Assumption 2.6. There exists a function w > 1in C?(R™) and constants d > ¢ > 0 such that
(a) lim|y|—0o W(Xx) = o0.
() L™ w(x) < —cw(x) + dforall (', 7?) in TI' x T1? and x in R™.
Assumption gives that, for each (n',71) € T x TT2, the Markov process x™ " (t), t > 0, is Harris positive

recurrent with a unique invariant probability measure w1 2 (-) for which

e 27)
Rﬂ
is finite. (See [3,4}137,142,169].)
By Theorem 4.3 of [3], for each pair (7t',7%) in TTI" x TI? the probability measures PT7 (t,4) and poo 2 are
both equivalent to Lebesgue’s measure A on R™ for every t > 0 and x € R™. Hence there exists a transition density
function pTr1 et (x,t,y) such that

1 2 1 2
B (1, B) =J P (1, ) dy (2.8)
B

for every Borel set B C R™.

Theorem (Dynkin’s formula) and, again, Assumption ensure the boundedness of E;‘] U [w (x(t))] in the
sense of the following result. The proof is straightforward (see, for instance, [52, Lemma 2.10] or [69, Theorem 2.1

(iii)]).
Lemma 2.7. The condition (b) in Assumption[2.6|implies that

ET ™ [w(x(1)] < e “twi(x) + % (1—ecY) (2.9)

for every (m',m?) in TI' x T2, t > 0, and x € R™.

We now introduce the concept of the w—weighted norm, where w is the function in Assumption
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Definition 2.8. Let B,,(R™) denote the Banach space of real-valued measurable functions v on R™ with finite w-norm,
which is defined as

IVl = sup .
x€ERM W(X)

Moreover, M., (R™) stands for the normed linear space of finite signed measures . on R™ such that

Il ::J wix)d ul < oo,
Rn

where || := pt + w denotes the total variation of p.
By 2.7), 11 -2 belongs to M, (R™) for every (n',n?) € TT' x TT2. In addition, for each v € B,,(R™), letting
Myt 2 (V) == [ vdp 2, we get

it 2 (V)] < ||v||wj w2l = [Vl et ez 1y < o0 (2.10)
R“

Let T be a positive constant. For (rr', 7i2) fixed, define the T-skeleton chain of x™ ™" (-) by:

1

X {x"‘»“z(kT) k=0,1, } . 2.11)
Let Qﬁi 7 (x, -) be the m-step transition probability of xf 7 defined as
QR ™ (x,B) =P} ™ (mT,B), B C R,

X

with PT™ as in (2.8).

: . e 1 2
Let us impose now the following condition on xF »™ .

Assumption 2.9. The skeleton chain (2.11) is uniformly w-exponentially ergodic. That is, there exist positive constants
p1 < 1and py such that, forall m > 1,

sup
(rc,t2) et xT12

Q™ (%) = 1 e ()| < p2piwi(x). 212)

Sufficient conditions for this Assumption are given, for instance, in Assumption 4.1 and Lemma 4.8 of [68].

The proof of the following result is based on those given in [51] and [52 Theorem 2.7].

Theorem 2.10. Suppose that Assumptions and hold. Then the process X () s uniformly w-exponentially
ergodic, that is, there exist constants C, & > 0 such that

sup [EZ Y (x(1) bt o2 ()] £ Ce O ¥ uw(x) (2.13)

(e, t2) el x112
forallx € R™, t > 0,and v € By, (R™). In (2.13), w1 72 (V) is defined as in (2.7), with v in lieu of w.

Proof. Fix T > 0 and note that any t > 0 can be expressed in terms of T as t = mT + s for some m = 0, 1,..., and
s € [0, T[. Hence, for every x € R™, v € B,,(R™) and t > 0 we have

B () = ot e (V)] =

v [P 0y b (]
Il | 300 P27 (€ 0) = b ()

— [Vl |ty

IN

, (2.14)

J FZ 7 (mT dy)BT ™ (s, dz) — o e (dy)
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by the Chapman-Kolmogorov equation. By Fubini’s Theorem, (2.14) becomes

1 2 1 2 1 2
BE Y (0000) — b 2 ()] < ¥l | P2 s, 2] [P 0T ) = )
RTL

w

1 2 1 2
i | P2 s, d2) QR (20— et e )
RTI

w

< VIlwp2pEX ™ wix(s)) by @12)

d
< Ivhorsoft [eerwin+ 4 (1- )] by @)
<

—1( 1T\t g
< Ivlpaor" (617)" (145 ) winl

Define C := p; p]’1 (14 d/c) and = —(log p1)/T, so that the result follows. O

The following result is true by virtue of Theorem[A.T|and @2.13).
Lemma 2.11. Assume that @.13) holds. Let (r', %) € TT' x T2, v € By, (R™), and x € R™. Then
1
lim —E™ ™ v (x(T)) = 0. (2.15)
Tooo T
Suppose in addition that v € C2(R™) N B,, (R™) is a harmonic function, in the sense that
L™ v(x) =0 forall x € R", (2.16)
Then v(-) is a constant; in fact,
V(x) = U1 n2(V) forall x € R™. (2.17)
Proof. The limit (2.15) is straightforward from 2.13). Now, if v € C?(R™) N B,,(R™) is a harmonic function, then
for every (n',7?) € TI' x 1?2, x € R™ and t > 0, Theorem[A.1yields

T
EX 7y (x(1) = v(x) + EF j L™ (x(s)) ds = v(x), (218)
0

where the last equality follows from (2.16). Letting T — oo in and using (2.13), we complete the proof. [

Following the arguments of Lemma it is easy to verify that the combination of Lemma Assumption
and Theorem[A T]yields

et () < 219)
for every (7r1,7r2) inTT' x TT2.
2.3 The payoff rate
Let R be a positive real number and By be the closure of
Br:={x € R™: x| < R}. (2.20)

Let us now introduce the payoff or reward/cost rate function r from R™ x U' x U? to R. Let us impose some
conditions on . Recall that U' and U? are compact subsets of given vector normed spaces.

Assumption 2.12. The function r is

(a) continuous on R™ x U' x U? and locally Lipschitz in x uniformly in (wy,uz) € U x U?; that is, for each R > 0,
there exists a constant C(R) such that

sup Ir(x,ur,uz) —r(y,ur,uz)| < C(R)x —yl
(uy,uz)eU xuz2

forall x,y € Bg;



(b) in By, (R™) uniformly in (w1, uy) € U' x U2Z, i.e., there exists a constant M such that

sup I (%, ur,u2)l < Mw(x)
(ug,uz)eU’ xuz

forall x € R™;
(c) concave in U, and convex in U2,

Analogously to (24) and .5), when using randomized Markov policies (n',7?) in TT" x T2, we will write, for
every x € R™,

r(x, ' ) = J

J (6w, 12) 70 (g b2 ().
uzJu?

Similarly, for (¢,¥) € V! x V2, we define
riob)i= | | vl ) eldu pdu). @.21)
uz Jur

Remark 2.13. We can verify that, for (¢, ) € V' x V?, the reward rate  satisfies Assumption a), that is, for each
R > 0, there exists a constant C(R) such that

sup Ir (%, @, %) =7 (y, 9, ¥)| < C(R)[x —yl
(@ p)eVvixVv?2

forall x,y € Bg.
The following result provides important facts.

Lemma 2.14. Under Assumptionsand a), the function v(-, @, ) is continuous in (@, ) € V' x V2. Moreover,
for a fixed hin C2(R™) N B, (R™), L®¥h is continuous in (@, p) € V! x V2.

Proof. Under the given Assumptions, the functions b and r are continuous in (11,u?) € U' x U?, and attain their
respective suprema on U', and infima on UZ2. Hence, the definition of weak convergence yields the result. O

Remark 2.15. [89, Theorem 4.2]. The compactness of U* (resp. V'), € = 1,2, the linearity of h — L®¥h, Assumption

2.12(c), and Lemma yield Isaacs’ condition:

inf , +L®%h(x)} = inf , +Le%h(x)}.
5:\13] Jof, {r(x, 0,0) (x)} Jof, 5;1\13] {r(x, 0,0) (x)}

For ease of notation we will combine expressions such as (2.4) and @.5), that is, for (@,) € V' x V2 and
1,2 1 2
(', m?) eI x T12,

(%, 0,7) =1 (x, 0, (-Ix)) and T (x, 7', p) =71 (x, 7' (-x),P) .
Similarly, for h € C#(R™),

L™ h(x) = L®™ (Mn(x) and L™ Ph(x) == L™ (X)¥h(x).



Chapter 3

Interchange of limits

This chapter addresses sufficient conditions to ensure that a sequence of solutions to certain Dirichlet problems
converges, in some sense, to the solution of the limiting Dirichlet problem. Such convergence will be crucial to
ensure the existence of the game’s value (see Definition and of saddle points. For an extensive treatment of
Dirichlet problems, we refer to [36] and [64]. To begin our analysis, we introduce first some important definitions.

Definition 3.1. The set C*P (R™) is the normed subspace of C*(R™) consisting of those functions f for which f, V', and Hf
satisfy a Holder condition with exponent 3 €]0,1[on x; € R, fori =1,2,...,n. The norm || - ||c2.6 (gn) is defined by

Ifllcz.e®ny = max{sup|f(x)|,sup|VF(x)|,sup [Hf(x)[}
If(x) — f(y)| IVf(x) — VEI(y)l |HIf (x) — Hf (y)|
+max{s“p —ylp TP T ey x—ylP

for each f in C* P (R™). The suprema are taken over all x,y € R™, with x # y.
Let Q be a bounded domain in R™, i.e., an open and connected subset of R™ and denote the closure of this set
by Q.

Definition 3.2. Fix p > 1. The normed space LP (Q)) consists of all measurable functions f on Q) for which ||f||zr (q) < oo,

where
1/p
Ifllzr (o) = (J |f(X)|PdX> .
Q

Definition 3.3. The set WP (Q) is the space of measurable functions f in LP (Q) such that f, and its first and second weak
derivatives, Oy, f, 02 f, are in LP(Q) for all i,j = 1,...,n. The corresponding norm is

4 XiXj
1/p
n

i,j=1

s P
1wz () = J TP + 3 10u FIP + Y 02, 7(x)[” | ax
Q i=1

For every x € R™, (¢,¥) in V! x V2, « >0, and hin C?(R™) let

B(X) ®, P, hy ) == <Vh(x)) b (x, (pyll)n —oh(x) +7(x, 0,¥), 3.1)
with b as in Assumption[2.T(a) and r as in Assumption[2.12} We also define

Loh(x) ;= sup inf b(x, @, b, h, oc)—i—lTr[[Hh(x)}a(x)], (3.2)
peVv] Ppev? 2

with a as in Assumption and b and h as in (3.1). By the Remark we are indifferent between defining
Lo h(x) as in (3.2), and defining it as

Coh(x) == inf sup b(x, @, P, h, oc)—i—lTr[[Hh(x)}a(x)].
YEV2 ey 2



The following result is one of the main resources along the development of our work. It gives conditions

ensuring that
lim Lo, hy =Lih (3.3)

m—o0o

in some sense.

Theorem 3.4. Let Q be a C? domain and suppose that Assumptions and hold. In addition, assume that there exist
sequences {hm} C WP (Q) and {&m} C LP(Q), with p > 1, and a sequence {owm } of positive numbers satisfying that:

(a) E(thm =&minQform=1,2,..
(b) There exists a constant My such that |[hum|l,y2.p (o) < My form =1,2, ..
(c) &m converges in LP(Q) to some function &,
(d) oum converges to some o.
Then:

(i) There exist a function h € WP (Q) and a subsequence {my} C {1,2,...} such that hy,,, — hin the norm of WHP (Q)
as k — oo. Moreover,
Loh=¢ in Q. (3.4)

(i) Ifp > m, then hy,, — hin the norm of C'"(Q) forn < 1 — %. If, in addition, & is in C>P(Q), with B <, then h
belongs to C* P (Q).

The proof is given in Appendix

This result can be found in similar versions in [3] Lemma 3.5], [4, Lemma 3.4.18], and [51} Proposition A.3] for
optimal control problems. We extend it here to zero—sum stochastic differential games. A major difference with [3|
Lemma 3.5] and [4, Lemma 3.4.18] is that our result enables a stronger type of convergence than that in WP (R™).
Proposition A.3 of [51] introduced the convergence of the sequence {«;, : m = 1,2,...} to a nonnegative constant
o

An important particular case of Theoremis that where the sets V! and V? have but one element; ¢ and 1,
respectively. In Corollary [3.5|below, (3.2) reduces to

£ (x) = B (x, 9,1y 00 + S Te [HRG)la()] (3:5)

respectively.

Corollary 3.5. Let the Assumptions of Theorem hold. In addition, assume that (@, ) is the only element in V! x V2
and that there exist sequences {h.,} C WP (Q) and {£,,} C LP(Q), withp > 1, and a sequence {or } of positive numbers
satisfying conditions (a)—(d) of Theorem Then the conclusions of Theorem (3.4 hold with £V h as in (3.5).



Chapter 4

Zero—sum stochastic differential games
with discounted payoffs

This chapter deals with stationary two—person zero—sum stochastic differential games with discounted payoffs.
We depart from an Itd’s diffusion, a payoff rate, and the dynamic programming equation associated to these. Af-
terwards we will borrow some techniques from the theory of elliptic partial differential equations (PDEs) to prove
the existence of a solution to such PDE (see [36]). Then we will see that this solution coincides with the value of
the game (see Definition [4.4).

Earlier references for SDGs with discounted payoff are Bensoussan and Frehse [9], Fujita and Morimoto [29],
Swiech [92], and Kushner [62], for instance.

We borrow Song’s and Mao’s concepts (see [90, O1]] and [67] respectively) on switching diffusions to propose
what we call SDG with random discounted payoff. The modification we use is in the spirit of Gonzalez-Herndndez
et al. works on controlled Markov processes [32,133]. That is, we intend to study a discounted payoff criterion where
the discount factor is stochastic, rather than being fixed.

4.1 The infinite-horizon discounted payoff criterion

The goal of this section is to prove the existence of saddle points as given in (4.2). To do that, we will present some
connections between the discounted payoff (4.1) and the Bellman equations (4.8)-(4.10) below. The assumptions
we will make are those in Chapter 2} except for Assumption

The game we will deal with is played as follows. At each time t > 0, both players observe the state of the
system x(t), and they independently choose control actions u(t) in Uy and u;(t) in U,. For every initial state
x € R™, the goal of player 1 (resp. player 2) is to maximize (resp. minimize) his/her reward (resp. cost) over an
infinite-horizon with respect to the optimality criterion defined in (&.1).

Fix a discount factor o > 0. For each pair of strategies (7', 7?) in TI' x TT? and x € R™, we define the infinite—
horizon discounted payoff V as

o0
Vo (x, 7! 7)== ET ™ U e *r (x(t),n',m?) dt| . (4.1)
0

By Lemma Assumption b) and Fubini’s theorem, we see that the expectation and the integral in {4.1)) are
interchangeable.

Definition 4.1. A pair (n},n2) € TI' x 112 is said to be a saddle point (also known as a Nash equilibrium or 2 noncoop-
erative equilibrium) if
Va (X) ' ’ '/Ti) <V (Xa 7-[1) ﬂf) < Vy (X) T[l)'nz) (4.2)

9



forallx € R™ and (n',7?) € TI' x T12.

Remark 4.2. An economic intepretation of this definition is that when both players are in equilibrium, if one of them wishes
to change his strategy, he would not earn more, on the contrary, he might actually loose value with respect to what he would
earn if he sticked to the strategies of the saddle point.

The following result establishes that the infinite-horizon discounted payoff V(-, -, -) is dominated by the Lya-
punov function w in Assumption[2.6} in a certain sense.

Proposition 4.3. Assumptions [2.6{and b) imply that the infinite—horizon discounted payoff Vi (-, 7', 7*) belongs to
the space By, (R™) for each (m',7*) in TI' x TI2. Actually, for each x € R™ we have

sup Vo (x, 7", 7?) | < M(a)w(x) with M (o) = mEtd (4.3)

(!, t2) el xT12 [o.4¢}
Here, ¢ and d are as in Assumption and M is the constant in Assumption

The proof of Proposition 4.3|is based on Lemma We omit it because it follows the same arguments of [51]
Proposition 2.2.3], or [53] Proposition 3.6].

4.1.1 Value of the game
The functions L and U on R™ defined by

L(x) = sup inf Vu(x,m',7*) and (4.4)
it et T ET?

U(x) = inf sup Vu (x,n,n* 4.5
(x) n2ell2 7t1€ﬁ1 ( ) (*9)

are called the lower value and the upper value, respectively, of the discounted payoff game. It is clear that
L(x) < U(x) forall x € R™. (4.6)
When the equality holds, we obtain the following.

Definition 4.4. If L(x) = U(x) for all x € R™, then the common function is called the value of the infinite-horizon game
and it is denoted by V.

Observe that if (7}, 72) € TT' x T1? satisfies the saddle point condition (#2), a trivial calculation yields
U(x) < Vi (x,7l,m7) < L(x) forall x € R™.
This fact, along with gives that, if a saddle point (7'(1, 7'(5) exists, then the infinite-horizon game has the value
V(x) = Vq (x, 7}, 72) forall x € R™ (4.7

The converse is not necessarily true.

Observe that, by (4.3), the lower and the upper values of the game, and therefore the value of the game, are in
By, (R™).
Let us introduce now the a—discount Bellman equations.

Definition 4.5. We say that a function v and a pair of strategies (n',7*) € TI' x TI? verify the a—discount Bellman
equations if

av(x) = 1(x, 7r1,7r2) L L y(x) (4.8)
= sup {r (x, 0,7 + L"””zv(x)} (4.9)

eVv!
= inf, {r (x, 7'\ ) + L“‘»%(x)} (4.10)

forallx € R™

10



The following result establishes a well-known relation between the infinite-horizon a—discounted payoff V
and the solution of equation below. It can be obtained by seeing V4 (-, 7', 7?) in as the resolvent of a
Markov semigroup (see, for instance, [25] p. 11] or [47, Lemma 2.2]), or by invoking Theoremfor e *Ty(x(T))
and then letting T tend to oo.

Proposition 4.6. Fix x > 0and (7', 7?) in TI' x T2, If a function v € C*(R™) N By, (R™) satisfies
av(x) =1 (x, 7', ) + L™ y(x) (4.11)

forall x € R™, then
v(x) = Vq (x,7t' 7% . (4.12)

Moreover, if the equality in (4.11)) is replaced with “<” or “>", then (4.12) holds with the corresponding inequality.

4.1.2 Existence of the value function
For (7', 7?) in TT' x T1? and R > 0, define the exit time

1

7 inf {t >0:x™ (1) ¢ BR} , (4.13)

with B as in (2.20). Since By is a bounded set, IFL‘;r1 e [Tg’ *“2} is finite. See [77, p. 119].

Define now

TR "
hgj,’{tz (x) := ]EQ1 L3 J e *r (x(t), ', 7?) dt (4.14)
0
for x € Bg. As in Proposition[4.3]
’hgjﬁﬂz (x)‘ < MJ' e ET " (x(t)) dt
0
< M(aJw(x), (4.15)

with M(«) as in (4.3). This implies, in particular, that hgj,{‘z belongs to B,,(R™).

Our next result establishes the existence of a solution to equation (4.11)). Its proof is inspired in the results of
Section 3.5 in [4] (see also [9, Chapter 3], [51] and [92]). We include it here for the sake of completeness.

Proposition 4.7. Fix « > 0, p > n, and (n',7t?) in ' x T12. Then there exists a function v in C*(R™) N By, (R™) that

satisfies (4.11)) for all x € R™.
Proof. We use Corollary to prove that ({.1T) admits a solution v, which is a member of C?(R™).

Fix R > 0 and consider the following linear Dirichlet problem:

avg(x) = 1 (%7, )+ L™ ™ vr(x) forall x € Bg, (4.16)
vr(x) = 0 forall x € 0Bg, (4.17)

with By as in 2:20). Observe that vg depends on the selection of (n',7?) € TI' x 2. However, we will use the
symbol v for ease of notation.

Theorem 9.15 of [36] ensures that (. 16)-(4.17) has a unique solution vg in WP (Bg).

A direct calculation yields that this solution is in fact vg = hgj,{‘z , with hgj,{‘z as in (4.14).

11



Now, fix p > n, where n is the dimension of the system (2.1). Let R, T oo be an increasing sequence of positive
numbers such that Ry > 2R. Then, for each m = 1,2, ... we invoke Theorem[A.3]to assert the existence of a constant
Co (independent of the sequence {Ry, }) such that

||VRm||Wz,p(BR] < Gy (HVRmHLP(BZR) + HT (-)711)712)”[:”82]2)) (418)
< G (M((X] [Wlo B,y +M HWHLP(BZR)) (4.19)
< Co(M(a) + M)[B2g/'/P max w(x), (4.20)

XEBR

where M(«) and M are the constants in (£.3) and in Assumption [2.12} respectively. In (£.20), |B2r| denotes the
volume of the closed ball with radius 2R. Thus, applying Corollary [3.5, we ensure the existence of a function
v € C%P(Bg), with B €]0, 1], such that vg — v uniformly on Bg, and also

av(x) =T (x, 711,712) +L"1‘"Zv(x) for all x € Bg.

Since R > 0 was arbitrary, we can extend the previous convergence vg, — Vv to all of R™. Finally, using the fact
that vg,, = hgj,ﬂf and combining it with inequality (4.15) we get that vg,, is in B,,(R™). Hence, by the uniform
convergence of vg,, — v and by Lemma we conclude that v is in C?(R™) N B,,(R™). This completes the
proof. O

Remark 4.8. From Proposition it should be noted that the function v € C*(R™) N B, (R™) depends implicitly on the
choice of (r',7?) in TT' x TT2.
4.1.3 Existence of a saddle point

In this subsection we establish a result on the existence of a solution to the x—discount Bellman equations (4.8)-
(4.10).

Theorem 4.9. Recall that n is the dimension of the diffusion (2.1). Let p > n. Fix an arbitrary « €]0, 1[. If Assumptions
2.6|and 2.12|hold, then there exist a function v in C*(R™) N By, (R™) and a pair of strategies (', %) in TI' x TI? that
verify the a—discount Bellman equations (&.8)—(&.10).

Proof. Fix « > 0, p > n, R > 0, and consider the Dirichlet problem

avg(x) = sup inf {r(x,@,P)+L*%vg(x)} (4.21)
@eV! Ppev?2

= inf sup {r(x, @, ) +L*%vg(x)} (4.22)
lPEVZ (P€V1

for all x € Bg, and the boundary condition
vr(x) = 0 forall x € 0Bg, (4.23)

with By as in (2.20).

By Theorem 15.2 of [36] (or Theorem 3.4.17 of [4] in the context of controlled diffusions), the problem (4.21)-
(4.23) has a solution vg € C2#(Bg), with0 < p < 1.

By Theorem we can assert the existence of a pair (7}, 72) € TI' x T1? such that (#16) holds. With this in
mind, it is easy to verify that vg = hgj]’fz with hgj{z as in (.14). Thus, by (4.15), we see that v is in B,, (Br).

Now let R, T oo be an increasing sequence with Ry > 2R, and let (n], 72 ) be such that (#I6) holds. By
Theoremthere exists a constant Cy (independent of Ry,) such that

||VRm||W2»p(BR) < Go (”‘)RmHLP[BZR) + HT (')711111)“1211) HU’(BZR))
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< Co(M(a) + M)[B2g|"P max w(x) < co.
xEBRr

Thus, Theoremyields the existence of a function v € C* P (Bg), with § €]0, 1], such that vg,, — v and

— inf , @, ) + LY

OW(X) 52\}71 lblgv2 {T(X ¢ ll)) V(X)}
= inf y @, ) + LY

lblg\/z 5161\1/)1 {T(X ® W) V(X)}

with x € Br. Now, since R > 0 was arbitrary, we can extend the convergence vg,, — v to all of R™.

Finally, since vg is in B, (R™), and due to the uniform convergence of vg to v, we can use Lemma to
conclude that v is a member of C?(R™) N B,, (R™). O

The following result establishes the equivalence between a saddle point of the ax—discount game and the strate-

gies that verify equations (4.8)—(4.10).

Theorem 4.10. Assume the hypotheses of Theorem Then the function v in C*(R™) N By, (R™) and the pair (nt},7?) of
strategies in TI' x T12 that satisfy the oa—discount Bellman equations [@E.8)—~(&.10) are such that:

(a) The function v(x) equals the value function V(x) in Definition[4.4for all x € R™, and
(b) The pair (ncl,72) is a saddle point, and therefore, from @7), Vo (x, 7L, 72) = V(x) for all x € R™.

Proof.  (a) Since the existence of the pair (},7n2) € T x T1? is ensured by Theorem[A.2] a comparison of
with (.11) yields that part (a) follows from Proposition [4.6]

(b) Let V* (x, 7', 7t?) be defined by
Ve (x, ) =1 (x, ) + L™ ™ v(x). (4.24)

Interpreting this function as the payoff of a certain game, it follows from [&.8)-(.10) and [50, Proposition
4.3] that the pair (7}, 72) is a saddle point, that is, V* (x, 7}, 72) = av(x) satisfies (.2). More explicitly, from

(£24) and the equality V* (x, 7], 7?) = av(x), becomes:
T (x, 711,715) +L ’“iv(x) < av(x) <7 (x, nl,nz) + ]L“l’”zv(x)
forall x € R™, and (n',7?) € T x T12. These two inequalities, along with the second part of Proposition [4.6]
give (4.2).
O
4.2 The infinite-horizon random discounted payoff criterion
In this section we consider a class of SDGs with two special features: (i) the system evolves according to a Markov—

modulated diffusion and (ii) the sum of the switching parameters, up to time t > 0, serves as discount rate for studying
an extension of the discounted payoff criterion of Section

To do this, we shall replace the constant « > 0 by a time-homogeneous continuous-time irreducible Markov
chain, namely «(-). We assume the state space of x(-) is a finite set E = {ot1, &2, ..., an} of positive real numbers.
Let qi; > 0 be the transition rate from state i to state j and observe that the transition probabilities are given by

P(oe(s +t) = ajlx(s) = 1) = qy5t + o(t), (4.25)
for states oy # oy, and qi3 = — Zj 2i Qij- The matrix Q = [qi;] is known as the infinitesimal matrix of the process

o).
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Now let the evolution of the game be driven by a diffusion of the form
dx(t) = b(x(t), x(t), w1 (t), uz (t))dt + o(x(t), «ft))dW(t), (4.26)

with initial conditions x(0) = x, and «(0) = «;. Here, W(-) is an m~dimensional Brownian motion as in (2.1) and
itis assumed to be independent of «(-). The expressions (4.25)—(4.26) are known as a Markov-modulated diffusion
with switching parameter o).

It is well known that, even though x(t) itself may not satisfy the Markov property, the joint process (x(t), x(t))
is Markov. See, for instance, [67) p. 104-106].

We will denote the transition probability of the process (x(t), «x(t)) by
PYoY2 (¢ B x J) =P ((x"*" "2 (t),x(t)) € B x J|x(0) =x, x(0) = o)

Xy, &4

for every Borel set B C R™ and ] C E. The associated conditional expectation is written E ;12 ().

The game is played as before in Section except that the state of the game is now (x(t), «(t)), rather than
just x(-). For every initial state (x, ;) € R™ x E, the goal of player 1 (resp. player 2) is to choose a strategy 7'
(resp. 7%) —see Definition below— that maximizes (resp. minimizes) his/her random discounted payoff over
an infinite-horizon with respect to the optimality criterion defined by

V (x, 04,7 1) = EQ‘]&?Z U exp(—S¢)r (x(t), a(t), 7', 7*) dt |, (4.27)
0
where, fort > 0,
t
S¢ = J o(s)ds, Sp :=0. (4.28)
0

We will refer to (4.27) as the infinite horizon random discounted payoff. The fact that o; > 0 for j =1, ..., N, along with
Assumption [£.15, below, ensures that (4.27) is finite.

Let us impose some conditions on the model {#.25)-.26). These conditions are much alike Assumption
except they use R™ x E in lieu of just R™.

Assumption 4.11. (a) The function b is continuous on R™ x E x U' x U? and there exists a positive constant Cy such that,
for each x and y in R™,

sup b (x, &, uy,uz2) — b (y, &, ug,uz)| < Cilx —y
(o,uq,u2)EEXUT xU?2

(b) There exists a positive constant C; such that for each x and y in R™,

sup [o(x, o) — o(y, a)| < Co[x —yl.
«x€kE

(c) There exists a constant and -y > 0 such that, for each x in R™, the matrix a(-,-) := o(-,-)o’(-, ) satisfies

infEx’a(y, o)x > yIx|* (uniform ellipticity).
xe

(d) The control sets U' and U? are compact subsets of complete and separable vector normed spaces.

Using the notation in Section let C?(R™ x E) be the space of real-valued continuous functions h on R™ x E
such that h(x, o) is continuously differentiable in x € R™ for each «; € E. For h € C2(R™ x E), let

N

Qh(x, ai) = Z qijh(x, o).

=1
Analogously to 2.3), for (uj,u;) € U' x U? and h € C*(R™ x E), let

1
L¥™h(x, o) := (VR(x, 01), b (x, o, ur, u2)) + S Tr[[HR(x, 00)] - alx, a)] + Qh(x, o), (4.29)
with a(+, ) as in Assumption Q).
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Strategies

As in Section for each ¢ = 1,2, we denote by V' the space of probability measures on U¢ endowed with the
topology of weak convergence. We define now the control policies we are going to use for the present variation
of the game model. The following definition matches Definition 2.4 (except for the fact that, here, we put R™ x E
instead of just R™).

Definition 4.12. For { = 1,2, a family of functions n* = {7} : t > 0} is said to be a randomized Markov strategy for player
Lif, for every t > 0, ¢ is a stochastic kernel in P(UYR™ x E). We denote the family of all randomized Markov strategies for
player € = 1,2 as TIY.. Moreover, we say that * € T1%, € = 1,2, is a stationary strategy if there exists a stochastic kernel
@ (- -) € P(UYR™ x E) such that 7! (Alx, &) = @' (Alx, o) forall t >0, A C U and (x,«) € R™ x E. In this case we
write 7w (+|-, -) rather than mt (|-, -).

The family of all stationary strategies for player { = 1,2 will be denoted as TT*.

When using randomized stationary strategies (7', 7%) in TT" x 12, we will write, for (x, ) € R™ x E,
b (x, o, 7', 7%) ::J b (x, &, 1wy, uz) 7' (dug |x, o)7e? (dualx, o).
uz Jur

For (¢,) € V! x V2, we also introduce the notation

b (%, o, @, 1) = j b (%, 0 11, 12) (duy ().
uz Ju?
Moreover, for h € C2(R™ x E), let
L™ ™ h(x, «) = J J LY Y2 h(x, )7 (duglx, o) (duslx, «). (4.30)
uz Ju?

We also use

LOVh(x, o) := J

J L2 (x, o) (g W (duz),
uzJu?

for (@,) € V! x V2.

Assumption ensures that, for each pair (n',7%) in TT" x T1?, the system (#25)-(26) admits an almost
surely unique strong solution x(-) := {x(t) : t > 0}, such that ((x-), «(-)) is a Markov-Feller process whose generator

coincides with the operator L™ " hin (4.30). For details, see, for instance, [67, pp. 88-90]. Moreover, the operator

L™ " coincides with the infinitesimal generator associated to the pair (x(-), (-)) in (4.25)-(4.26). See [67, p. 48],
for instance.

Some assumptions and definitions
The following hypothesis is a Lyapunov-like condition analogous to Assumption[2.6]
Assumption 4.13. There exists a function w > 1in C?(R™ x E) and constants d > ¢ > 0 such that
(a) limy)—0o W(x, &) = 00 forall x € E.
(b) L™ ™ w(x, &) < —cw(x, &) + d for all (', ) in 1" x 1% and (x, «) € R™ x E.

Here, as in Lemma the condition (b) in Assumption implies that
d
EZ 3w (x(t), a(t)] < e twix, o) + - (1—e ) (4.31)
for every (n',7?) inTT' x TT%,t > 0, and (x, ) € R™ x E.

15



Definition 4.14. Let B,,(R™ x E) denote the Banach space of real-valued measurable functions v on R™ x E with finite
w-norm, which is defined as
vix, &

V[, == sup
v (x,x)ERM XE W(X’ (X)

Lett:R™ x E x U' x U? — R be a measurable function, which we call the payoff rate. The following conditions
are analogous to those in Assumption[2.12}

Assumption 4.15. The function r is

(a) continuous on R™ x E x U' x U? and locally Lipschitz in x uniformly in (o, u1,uz) € E x U x U?; that is, for each
R > 0, there exists a constant C(R) such that

sup |T(X»Oi,u1»uz)—T(yafxﬂthuzﬂSC(RNX—U\
(g, up)eExUT xU2

forall x|, Iyl < R;
(b) in By, (R™ x E) uniformly in (uy,uz) € W' x U?, i.e., there exists a constant M such that

sup |T' (X) X, U1, LL2)| < MW(X> (X)
(ug,uz)eU xu?2

forall (x,x) € R™ x E;
(c) concave in U and convex in U? for every (x, o) € R™ x E.
When using randomized Markov strategies (', 7% ) in TT' x T12, we will write, for every (x, ) € R™ x E,
T (X> &, 7-[1 ) 7-[2) = J R . T (X) Xy U1, uZ) 7'[1 (du1 |X7 oc)7'c2(du2|x, 0(); (432)
uz Ju

and, for (@, ) € V! x V2,

(% 0 @, ) = j (% & w1, 142) (s Jip(du).
Juz Ju

Similarly, for (¢,) € V! x V2 and (n',n?) € ' x T1?,
T (X) o, (P)TEZ) =T (X) X, (p,T[zHX, O()) )

and
(%, 007m P) =1 (%, 07 (x, ), )

Finally, for h € C2(R™ x E), we also write
Lo h(x, ) := L“””z(""‘“)h(x, o)

and : 1
L™ VYh(x, o) := L™ (o) Ph(x «).
The following result is analogous to Lemma

Lemma 4.16. Fix hin C?>(R™ x E) N B, (R™ x E). Under Assumptions and c), the functions v(x, o, @, ) and
L® ¥ are continuous in (@, ) € V' x V2 for every (x, «) € R™ x E.

Remark 4.17. Analogously to Remark the compactness of Ut (¢ = 1,2), the linearity of h — L®¥h, Assumption
M.15(c), and Lemma[{.16]yield Isaacs’ condition:
inf L®%Yh
(:;151 o, {r(x, 0, ,) + (x, &)}

= inf T L®Y%h .
e (:;1\1;)]{ (x, 0, @, ) + (x,00)}
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Recalling (#27)-(#28), we will say that a pair (n},72) € TI' x T1? is a saddle point of the infinite horizon
random discounted game if

V(x,a,n'w2) <V (x, a7, m2) <V (x, &7, 7) (4.33)
forall (x,«) € R™ x Eand (n',7?) € TI" x T2,

Following the arguments of [51, Proposition 2.2.3] or [53, Proposition 3.6] we can use (4.31) to see that V (-, LT, 7'[2)
is in B, (R™ x E) for each (n',7?) in TT" x T2,

The lower and upper value functions L and U, respectively, in R™ x E are defined similarly to (.4)-(4.5), with
(x, &) instead of x. If these function are equal, we denote such equality as V(x, «) for all (x, o) in R™ x E.

Definition 4.18. We say that a function v and a pair of strategies (n',7*) € TI' x TI? verify the random discount
Bellman equations if

avix, o) = 1(x, 0, ) + L™ v(x, o) (4.34)
= sup {r (x, &, @, %) + L®™ v(x, oci)} (4.35)
peVv!
—  inf {r (x, &, ') + L7 P (x, oci)} (4.36)
Ppev

forall (x,o;) € R x Eandt > 0.

Interchange of limits
For every (x, &) € R™ x E, (@,) € V! x V2, W (-) = h(,, o) € C2(R™) for j # i, define

B(X» ai)@)w>h1»--->h ) <Vhl( x), b (%, “1)(9»1b)>_o‘ihl( )+ 1 (% 0, 0,0 +unhl (4.37)

with b as in Assumption a), T asin Assumption and i such that h = h(-, o). We also define

L (x, o, hYy o WYY = sup 1nf b (x, a1, @, W, R, RY) + 1Tr [[HR (x)] - alx, &)] -
pevi ¥e 2

Let QO C R™ be a bounded domain, as in Chapter Consider also its closure Q.

The following is an extension of Theorem [3.4]

Theorem 4.19. Let Assumptions {4.11|and |4.15\ hold. In addition, assume that there exist sequences {hin} C WHP(Q),
j=1,..,Nand{&n} C LP(Q), withp > 1, satisfying that:
@ L (x, o, h! hiY) =&minQform=1,2,.. and «; € E.

moy e

(b) There exists a constant M% such that Hh%n ‘wz o) < Mj1 form=12..andj=1,..,N
P

(c) &m converges in LP(Q) to some function E.
Then:
(i) Foreachj =1,...,N, there exist a function hJ € W2P(Q) and a subsequence {mk} c{1,2,...} such that h];n.];( — h
as k — oo strongly in WP (Q), and weakly in WP (Q). Moreover,
£(h' W) = in Q xE, (4.38)

j

(ii) If p > n, then W, — W in the norm of CON(Q) forn < 1 — 2 and] = 1,..,N. If, in addition, & is in C>P(Q),
my
with B < 1, then W belongs to C*P(Q).
A sketch of the proof is provided in Section [B.3]
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Existence of value and saddle points

We establish now extensions of the main results of Sections and

First we give an analogue of Proposition 4.7}

Proposition 4.20. Fix p > n, and (n',7%) in TI' x T12. Then there exists a function v in C*(R™ x E) N By, (R™ x E) that
satisfies

oqv(x, o) =1 (x, o, ', 77) + L v, o) (4.39)
forall (x, ;) € R™

The proof of Proposmon @ resembles that of Proposition[f.7] The difference lies in the fact that one should
replace x by (x, «;), and h7T ¥ (x) by

hE ™ (o) = BT U o explSur (xt alt), 7, w?) e
0

with S as in (#.28).

Theorem 4.21. If Assumptions|4.11}4.13} and 4.15|hold, then there exist a function v € C*(R™ x E) N By, (R™ x E) and
a pair of strategies (r',7*) in TI' x T1* that satisfy the random discount H]B equations @34)-@36). Moreover, such a
function v coincides with the value function V of the random discounted game, and (7', 7*) is a corresponding saddle point.

The proof of this result is very much alike those of Theorems {4.9) and (except one should replace x by
(x, ®1) and put the space C2(R™ x E) N By (R™ x E) in lieu of C?(R™) N B, (R™)). We should note that the proof of
Theorem 4.9 quotes Theorem 8.4} and that Theorem[4.10]uses Proposition[4.6, We should replace these with proper
invokations of Theorem[#.19)and the following result

Proposition 4.22. Fix (7r , T ) in T1' x T2, If a function v € C*(R™ x E) N By, (R™ x E) satisfies (39) for all (x, ;) €
R™ x E, then
vix, o) =V (x, 0,7, %) (4.40)

where V is the random discounted payoff criterion defined in (4.27).

Moreover, if the equality in (4.39) is replaced with “<” or “>", then (4.40) holds with the corresponding inequality.

Proof. Fix (n',7?) € TI" x TT2. Observe that Dynkin’s formula for Markov modulated diffusions (see [67, Theorem
1.45 and Lemma 1.9]) yields

T

BT (expl=STIv(X(T), () = vlx, o) + EX 3™ UO exp{—St}(fcx(t)v(x(t),oc(t))+Ln1,n2v(x(t),oc(t))) dt]

0

o
= v(x,oq) —EF QT U exp{—Sr (x(t), a(t), 7', 72) dt] (by @E39)).

Define

&, = min_ aj.
j=1,..,N

Since v is in B,, (R™ x E),

E;T 0(71-( (eXp{*ST}V(X(T), CX(T))) S E;T 0(71'[ (e*a*T HV”WW(X(T), CX(T)))
< e Ty, {e‘CTw(x, o) + g (1—ecT)| (by @31))

— OasT — oo.
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This implies that

Vi) = EXGT J exp{—Sr (x(t), o, 7', 72 dt

= V(xo,m 7).

Similarly, the proof of the second statement uses the same arguments by replacing the equality in (4.39) by either
IIS/I OI' 112”. D

4.3 Concluding remarks

This chapter was intended to characterize saddle points for a general class of SDGs with discounted payoffs. We
studied two models of zero-sum games in infinite-horizon: with a fixed discount rate and with a rate of discount
driven by a Markov chain. We gave sufficient conditions for the existence of value functions and equilibria in both
contexts.

Theorems and are typical verification results, so they yield the existence of saddle points in the
infinite-horizon games we studied.

As for the value of the infinite-horizon game, the uniform ellipticity condition in Assumption C) on the
diffusion (2.I), along with Theorem 3.4 provided us with a powerful tool. Proposition 4.7|was proved thanks to
Theorem [3.4| without making explicit use of semigroup theory. Moreover, this theorem has a broad range of ap-
plications in, for instance, the vanishing discount technique for proving the existence of equilibria in SDGs with
ergodic payoff and the policy iteration algorithm for finding those equilibria. The following chapters are devoted
to develop some of these applications.

We provided an analogous version of Theorem 3.4for the context of the random discounted game in Sectionf4.2}
The key of Theorem [£.19]is the assumption that the diffusion is replaced by the Markov-modulated dynamic
(@.25)-(.26). The main changes we had to include in our model for this problem (with respect to Section .T)) were
the substitution of x € R™ by (x, ) € R™ X E, and of the generator displayed in (2.3), by that of (4.29). Moreover,
Proposition gave us that the Bellman equation associated with this game is of the form (£.5). However, this
fact was to be expected, since the controlled discrete-time version of the problem studied in [32] and [33] presents
the same feature.
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Chapter 5

The vanishing discount technique for
zero—sum SDGs with ergodic payoff

This chapter is devoted to the study of ergodic zero—sum SDGs. This type of games has been studied, for instance,
in [9][18}63]. Our main goal is to look for saddle points in the sense of below, when the payoff function for
each player is given by (5.2). To ensure the validity of several results here, we will use the uniform w—exponential
ergodicity referred to in Theorem

We will use the vanishing discount technique to study the connection between some Bellman-type equations
arising of a discounted game and the saddle points of an ergodic game. This approach is one of the most common
methods to deal with the average payoff criterion. It is so-named because it is based on the convergence of certain
sequence of discounted problems as in Chapter [ (indexed by a discount rate o) as the discount rate vanishes, i.e.
x| 0.

5.1 Average optimality

Recall that U' and U? are compact subsets of given vector normed spaces (see Assumption d) and Section .
By the results in the beginning of Section V' and V2 are also compact spaces. Furthermore, consider the family
' x T1? of all pairs of stationary randomized Markov strategies for players 1 and 2 (see Definition . Finally, let
R be a positive real number and let Bg and Bg be as in (2.20).

For each (n',7?) e ' x TI#and T > 0, let

.
Jt (x, 7', %) = E;‘]‘”Z “ T (x(t), 7", %) dt] (5.1)
0

be the total expected payoff of (n',7?) over the time interval [0, T], when the initial state is x € R™. The ergodic payoff
(also known as long—run average payoff) given the initial state x is given by

J (x,7',7?) == limsup %]T(x, ', ). (5.2)
T—oo

Proposition 5.1. Let Assumptions and hold. Then the payoff rate v is w1 2—integrable for every pair
(', m?) e T x T12
Proof. Given (n',7?) € TT' x TT?, define

J(', 7)== 2 (v (' 7)) = JRn T (%, ) Ut ez (dX). (5.3)
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with W 2 asin (2.7).

By the definition of J (', %) in (5.3), Assumption2.12(b), and yield
J (', 7*)] < J v (%, 70, %) | et 2 (d%) € M- g ez (W) < 00 (5.4)
RT\,

for all (n',7?) € TI" x TT2. In fact, by 2.19),
d
U(T[],T[z)‘ SM'HW‘,WZ(W)SM'E) (55)

so that J (n', %) is uniformly bounded on TT' x TT2. This yields the desired result. O

It follows from (2.13) that the average payoff coincides with the constant J (n',7?) in for every
(n',m?) € TI" x TT2. Indeed, note that J1 defined in can be expressed as

T

Jr (x, 7', m?) =T -] (n', %) —|—J {]Efl’"zr (x(t),n' ) — 7] (711,712)} dt.

0
Hence, multiplying the latter equality by + and letting T — oo, by (2.13), we obtain,
1
J (x,n' %) = limsup TIT (x, 7", m?) =] (n',n?) forall x € R™ (5.6)
T—oo

By virtue of this last expression, we can write (5.2) simply as J (1!, 7).

We now define the constant values

U= inf sup J(n',7*) (5.7)
m2el? acom
and
L:= sup inf J(n',7?). (5.8)

e mrEN?
The function £ is called the game’s lower value, and U is the game’s upper value. Clearly, we have £ < U. If these
two numbers coincide, then the game is said to have a value, say V. This number is the common value of £ and U/,
ie.,
Vi=L=U. (5.9)
As a consequence of and (5.5), £ and U are finite. This implies that V is also finite if the second equality in
holds.

The basic problem we are concerned with is to find average payoff equilibria or saddle points of the average payoff
SDG. Namely, we are interested in pairs (7}, 7Z) € TT" x TT? for which

J(n'y72) <] (m, i) < (ml, ) (5.10)

for every (', 7*) € TI" x TT%. The set of pairs of average payoff equlibria is denoted by (TT' x T1?) _ .
Remark 5.2. Observe that if (nl,7i2) is an average payoff equilibrium, then the game has a value ] (ntl,72) =: V. As in the
discounted payoff case, the converse is not necessarily true.

Definition 5.3. We say that a constant | € R, a function h € C2(R™)NByy, (R™), and a pair of strategies (r', ) € TI' xT12
verify the average payoff optimality equations if, for every x € R™,

J = r(gn',m?) +L7 " h(x) (5.11)

= sup {T‘ (x, @, m) +L"”“Zh(x)} (5.12)
eeV!

= inf, {r (x, 7, ) +M‘»‘Ph(x)}. (5.13)

In this case, the pair of strategies (r', %) € TI' x T2 satisfying (.11)~(5.13) is called a canonical equilibrium.
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The following result holds by virtue of Theorem It is the ergodic version of Proposition 4.6 in the dis-
counted payoff case. We omit the proof because it is immediate.

Proposition 5.4. If there is a constant |, a function h in C*(R™) N By, (R™) and a pair (7', 7?) in 7' x T such that

J>r (', 7)) + L™ h(x) forall x € R™, (5.14)
then
J>](n' ). (5.15)
Similarly, if the inequality (5.14) is replaced by “<”, then (5.15) should be replaced by the same inequality, i.e., if

J<r(x,n' m?) + L™ h(x), then J <] (n!, 7).

Therefore, if the equality holds in (5.14), then we have ] =] (7', 7?).

Our next result ensures the existence of solutions to equations (5.11)—(5.13). Furthermore, it relates some com-
ponents of these equations with the properties of the game in (5.9) and (5.10).

Theorem 5.5. If Assumptions and hold, then:

(i) There exist a solution (J,h) € R x (C*(R™) N By, (R™)), and a pair (7', 7?) € TI' x T2 such that the average payoff
optimality equations (5.11)—(5.13) are satisfied. Moreover, the constant | equals V, the value of the game, and the
function h is unique up to additive constants, under the extra condition that h(0) = 0.

(ii) A pair of strategies is an average payoff equilibrium if, and only if, it is canonical.

The proof we will offer is based on an extension of the vanishing discount technique for control problems (cf.
[8, Chapter II], [17, Corollary 6.2], and [71]]). We present such extension in the following section.

5.2 The vanishing discount technique

We will prove the existence of solutions to the average payoff optimality equations (5.11)—(5.13) using the so—called
vanishing discount approach. The idea is to impose conditions on an associated o—discounted payoff game in such

a way that, when « | 0, we obtain equations (5.11)—(5.13).

To this end, recall the payoff rate r given in Assumption and let Vi be the expected a—discounted payoff
defined in (1), that is
Vo (x, 7', 7?) = BT U e (x(t), 7', ) dt} . (5.16)
0

In Theorem {4.9) we showed that, under Assumptions and there exist a function v, in C2(R™) N
B, (R™), and a pair (7', 7t?) in TT' x T1? that satisfy @.8)-(4.10), i.e.,

walx) = 1, m) + LT vy (x) (5.17)
= sup {r (x, 0,7 + L‘p’”zv(x(x)} (5.18)
@eV!
s 1 UINT
= ¢1é1\£2 {r (x,m' ) + L v“(x)} , (5.19)

for all x € R™. These results and Isaacs’ condition of Remark give that

va(x) = inf sup Vu(x, @, V) (5.20)
lIJEVZ ‘P€V1

= sup inf V(x, @, ). (5.21)
(pevlll)GVZ
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Passage to the limit as « | O:
We characterize the classical solution (J,h) € R x (C*(R™) N B, (R™)) of (5.1T)-(5.13) as the limit, as « | 0, of v in

E.17-E.19).

Theorem 5.6. For each o > 0, let ho(x) := v (x) — v (0), where vy (-) satisfies GI7)—(G.19). If Assumptions[2.1} 2.6} [2.9
and hold, then there exists a constant |, a function h € C*(R™) x B,,(R™), and a sequence o, | 0 such that

XmVa,, (0) =] (5.22)

and, for all x € R™,
he, (x) — h(x), (5.23)
Omhe,, (x) — 0. (5.24)

In addition, the limit (], h) satisfies (5.11)—(5.13).

The proof of Theorem 5.6]is based on Theorem 3.4 Hence we devote the following lines to the verification of
the hypotheses of such result.

Recall from Chapter 3| that Q is a bounded, open and connected subset of R™. To invoke Theorem we
need to ensure the existence of {h,,} C W»P(Q) and {£,} C LP(Q), with p > 1, and a sequence {a,,} of positive
numbers satisfying that:

(@) Form=1,2...,

Em(x) = sup inf {T (%, @, ) + L(pywhm(x)} — otmhm(x)
peVv] Ppev?
= inf sup {T (%, @y, ) + L(p’whm(x)} — &mhm(x)
Ppev2 ecV?

for all x in Q.
(b) There exists a constant My such that [[hml[yy2.0 (o) < M1 form=1,2,...
(c) &m converges in LP(Q) to some function &
(d) o converges to some o.

To this end, let oy, > O be a sequence of positive numbers such that o, | 0 as m — oco. Define hy,, (x) =
Va,, (X) = Vg, (0) foreachm =1,2,...asin Theorem A direct calculation yields that vy, (x) = hq,, (x) +V«,, (0)

satisfies (5.17)—(5.19), i.e.,

XmVan (0) + amha, (x) = 1 (x,7',7%) + L™ ’”zh‘xm (x) (5.25)
= sup {r (x, @, ) + Lo hy (x)} (5.26)
peVv!
— 1 LR
= inf, {r(om!, ) + L7 P he,, (0} (5.27)

for all x € R™ and all «,,; > 0.

Verification of the hypotheses of Theorem 3.4

(a) Define the constant functions
Em(x) == amvg, (0) forall x € R™. (5.28)

Replacing these in (5.25), we can see that hypothesis (a) of Theorem 3.4 holds.
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(b) Fix an arbitrary R > 0, and let Bg be as in (2.20). Then, by Theorem there exists a constant Cy such that,
for fixed p > n,

Ien lwzn g) < Co (Iecn o ma) + 17 (57 7)) + 1V (O] - (529)

Note now that, by (5.16), for every (n',7?) in TT" x TT? and o > 0, we get

o0

Vo (x, 71", %) = Vo (0,7, %) | < et

E™ ™y (x(t), 7' %) — EF ™y (X(t),ﬂ1,7tz)‘ dt
0

X

S efoct

do

+J et Eg] oy (x(t), ', ) — ] (7{1,752)‘ dt
0

< CMe™ (280t (1(x) +w(0)) dt (by @.13))

do

IE;‘1 o (x(t), ', m?) — 7] (71‘,712)‘ dt

with M as in Assumption b). Let M := % (1 +w(0)). Since w > 1, we see that
[Va (x, 70, 1) — Vi (0,7, %) | < Mw(x).
Hence, since M is independent of (n', %), it follows from (5.20)-(5.21) that

Mo, (X)) < sup ‘Vocm (X) 711)7[2> — Va (0,7’[1,7'[2)’ )
(71, 7e2)eTT! xT12

and so
Ihe,. (x)] < Mw(x) for all x € R™. (5.30)

Furthermore, the relation implies that the sequence in (5.28)) is bounded by a positive number, say p.
Combine (5.29), (5.30) and Assumption b) to obtain that, independently of our choice for o,

e o) < Co (RUIWIL (5, + MWl (5, +0)
< Co (IOH— M) |Bor|'/P @Bax w(x) + pCo, (5.31)
x 2R

where |]_3 >r| denotes the volume of the closed ball B;g with radius 2R. Hence, by (5.31), hypothesis (b) of
Theorem holds.

(c) Since otmvim (0) in (5.28) is bounded, there exist a number ] and a subsequence of {ay} (again denoted as
{om}), such that holds. Hence hypothesis (c) of Theorem 3.4 follows.

(d) Since « | 0, hypothesis (d) trivially holds.

Proof of Theorem Since hypotheses (a)-(d) of Theorem |3.4{hold, we invoke that result to assert the existence of
a function h in the class WP (Bg) such that hy,, (or a subsequence thereof) converges to h in Bg. In fact, we can
use again, along with the compactness of the embedding WP (Bg) < C%"(Bg) forn < 1and p > n, as
well as Arzela—Ascoli’s Theorem, to ensure that the convergence hy,, — h is uniform on any bounded, open and
connected subset Bg C Byg, and that h actually belongs to C*# (Bg) forall 0 < B < 1.

Also observe that, by (5.31), amha,, (x) — 0in WP (Bg). Indeed, let

M := Co | (M +M)[B2g|"/P max w(x)+p

x€B2r

to see that:
||o‘mh’fxrn||W2»P(BR) = ‘Xm”hcxmnwz‘p(gk)

25



< amM;
— 0 as a0

This proves (5.24).

To prove the last part of Theorem[5.6] we apply Theorem [3.4]to obtain

J = sup inf {T X, @,)) + LOVh(x)} (5.32)
eeV! eV

= inf sup {r(x,9,¥) +L*%h(x)} (5.33)
Ppev? eeV?

for all x € Bg.

Since the choice of R > 0 was arbitrary, we can extend the convergence hy,, — h to all of R™ with h satisfying

3). Actually, by (5.30), we can ensure that hy,, is in By, (R™). Now, the uniform convergence of hy,, to h
on bounded open and Connected subsets of R™ and the use of Lemma. yield that h belongs to C2(R™)NB,, (]R“)

Finally, the existence of a pair (7', 7?) € TTI' x TT? such that equations (5.11)-(5.13) are satisfied, is given by
O

(5.32)—(5.33) and by Theorem |A.2
y

5.3 Proof of Theorem 5.5
(1) The proof of the existence of a constant ] and a function h such that (5.11)-(5.13) hold was given in Theorem

On the other hand, Propositions 4.2 and 4.3 in [50] combined with (5.11)—(5.13) and Proposition [5.4]yield that
] = V . Further, the proof that h is unique up to additive constants requires us to note that if h satisfies (5.11)-
(5.13), then so does h + k, with k constant because L¥1¥2 js a differential operator (see (2.3)). To prove the
uniqueness of solutlons to equatlons ), let us suppose that (J,hq) and (], h,) are two solutions in R x

(C2(R™) N By (R™)) of (G.17] that is
J o= rlont,m) + L7 R (x),
] = r(x,m',m?) L ha(x).
The substraction of these two equalities yields that L™ ‘"Zn(x) = 0, withn(-) := hy(-) — h2(-). Hence, by Lemma

21T

N(x) = Hp1 r2(n) forall x € R™
Wt 72 (h1 _hZ)

But w1 2 (h1 —hz) must be zero, since (0) = hq(0) —hz(0) = 0. This gives hy = h;

(ii) The only if part. We use the same arguments in the proof of [17, Corollary 6.2]. Suppose that (7},72) is an
average equilibrium that is not canonical. Then, either (5.12 or 5.13) does not hold. Assume that, say, (5.12) is not

satisfied. Then, by the continuity of x — v (x, 7', %) + ]L" e h( ), there exists a constant € > 0 and a Borel set
B C R™, with A(B) > 0 (recall that A stands for the Lebesgue measure on R™) such that

J>1(xml,ml) + L™ ™ h(x) + exp(x) for x € R™, (5.34)
where xg (+) stands for the indicator function of B. Combining Theorem[A.1]and (5.34) we obtain, for all t > 0,

£ i) — i) < Je— BT (| (uts) ) as) - s ([aonas). 639
0

0

Multiplying by t ' and letting t — co yields
J(mcl,m2) + eln -2(B) <J (by 213) and 2.15)). (5.36)
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Moreover, by [3, Theorem 4.3], 1, 12 18 equivalent to the Lebesgue measure A. Hence A(B) > 0 yields Mol 72 (B) >
0, and thus J (n],712) < J =V, which contradicts the equilibrium property of (nl,72).

The if part. Suppose that (7], 7t2) satisfies the average optimality equations. Then, by (5.11) and Proposition|5.4we
obtain that (7}, 7?) is average optimal. O

5.4 Concluding remarks

This chapter introduces the average payoff criterion for SDGs. This criterion is the basis for the developments
to come in our work, such as the so-named policy iteration algorithm and the obtention of bias and overtaking
equilibria. A central hypothesis for our developments is the uniform w-exponential ergodicity condition (2.13).
The main result is Theorem 5.5} because it gives us elements to study ergodic payoff games as a limit of discounted
payoff problems. A key to this fact is Theorem 3.4}
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Chapter 6

Policy iteration for zero—sum SDGs with
ergodic payoff

The results in Chapter (specially Theorem ensure the existence of the pairs (J,h) in R x (CZ (R™) N B,y (Rn))
and (7', 7?) in TT' x TT* to the average optimality equations (5.11)-(5.13). However, the question now is: how can
we find (or at least approximate) values of J(= V), h, and (n',71?)? Providing an answer to this and other related
questions is the goal of this chapter. Our aim is to give conditions under which a certain algorithm, in our case, the
policy iteration algorithm (PIA) produces convergent sequences of values and policies for a SDG with ergodic payoff.

The PIA was used by Fleming [26] to study some finite horizon controlled diffusion problems in 1963. Flem-
ing himself attributed the PIA to Bellman. Now, since Howard [49] determined optimal policies for processes in
infinite-horizon by proposing a solution based upon successive approximation in a policy space, some authors
know the PIA as Howard’s algorithm. It was studied later by Bismut [13] and Puterman [81} [82], who found its
convergence rate for controlled diffusions in compact regions of R™. Arapostathis [5] studied a version of the PIA
also for controlled diffusions. For discrete-time zero-sum games, Van der Wal [94] presented a convergent version
of the PIA under the assumption that the state space and the action space are both finite. The goal of the PIA for a
SDG is to generate sequences of strategies and value functions that converge to the equilibrium and value function
of the SDG.

The algorithm we present resembles that introduced in [46] for controlled Markov decision processes in Borel
spaces and is inspired in the Hoffman—Karp [48] version presented in [94]. In our algorithm, we propose to fix the
action of one of the players to find the other player’s best action, thus reducing the game in that stage to a Markov
control process. Then, we find the current value of the game and we move on to the next iteration, where we fix
the other player’s best action.

The set of assumptions we used in Chapter [5|ensures the convergence of the PIA to a saddle point of the zero-
sum SDG with ergodic payoff. To prove this, we will use again Theorem 3.4]and, for a given pair of strategies, we
will use the concept of its bias from the game’s value (see equation below).

Throughout this chapter we will consider that Assumptions [2.9and hold.

6.1 The policy iteration algorithm

We now introduce the PIA, also known as policy improvement algorithm. The version we present in this section
was inspired by the results in [46)[94].
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The PIA:

Step 1. Set m = 0. Select a strategy 7§ € 1%, and define J (7! |, 7%;) := —o0.

Step 2. Find a policy mt}, € TT', a constant ] (), 72,), and a function hy,, : R™ — R of class C*(R™) N By, (R™) such
that (J (7}, 72,) , hum) is a solution of (6.1)-(6-2):

] (711111,7(1211) = sup {r (x, cp,nfn) + L‘P’“fnhm(x)} (6.1)
eeVv!
= (%7, )+ L™y (x) forall x € R™. (6.2)
Observe that 1
J (e, m2) > LL)in\g {r (x, b, ) + ]L“m"bhm(x)} for all x € R™. (6.3)
€ 2

Step 3. If J (), %) = J (n}, 1,75 _4), then J (], 7%, ) is the value of the game and (7}, 72,) is a saddle point.
Terminate PIA. Otherwise, go to step 4.

Step 4. Determine a strategy 72, , ; € T1? that attains the minimum on the right hand side of (6.3), i.e., forall x € R™
(0 Ty ) LT () = 07 (0 9) + L7 P ()] (6.4)

Increase m in 1 and go back to step 2.

Remark 6.1. Observe that Remark [2.15 makes us indifferent between using the PIA version we have proposed, and using a
modification that minimizes in (6.2) in step 2, and maximizes in (6.4) in step 4.

Definition 6.2. The PIA is said to converge if the sequence ] (7}, 72,) converges to the value of the game defined in (5.10).

That is,

J (M ) = V.

To ensure the convergence of the PIA, we need to guarantee it is well-defined. To do this, it is necessary to
satisfy the following conditions.

1. For every pair (n',7?) € TI' x TI?, there exists an invariant probability measure p,1 2. This is the first

consequence of Assumption [2.6]

2. For every pair (n', %) € TT' x 1%, the payoff rate v (-, ', 7?) is 1 2—integrable, so that holds, that is,
J (7', 7)== e (v (7w 2)) :J' T (%, 7) Pt 2 (dX).
This follows from Proposition 5.1}

3. For every pair (', 71%) there is a unique solution (J (7', %) , h1 2) to the Poisson equation

J(n',m?) =7 (x,7',7?) + L™ ™ b n2(x) forall x € R™, (6.5)
which is guaranteed by Proposition[6.4below.

4. For each 72, € T1?, there exists a strategy 7! € TT" such that (6.2) holds. This is indeed the case by virtue of
Assumption the compactness of V', and Theorem[A.2]

5. For every function h,, in a suitable set, there exists a strategy 72, , ; € 1% such that (6.4) holds. This statement
is true by Assumption the compactness of V2, and again Theorem |A.2)

As already noted above, a necessary condition for the algorithm to be well-defined is the existence of a solution
(J (", 7®) ,hy q2) to the Poisson equation (6.5). To prove this, we introduce the concept of bias of (7', 7?).
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Definition 6.3. Let (n',7t?) € TI' x T12. The bias of (7', 7*) is the function given by
Ryt ez (x) 1= J:o []E;“ e (x(t), 1, 72) — ] (7'[1,7'[2)} dt. (6.6)
Observe that this function is finite-valued because and the Assumption[2.12b) give, for all t > 0,
‘E;‘] oy (x(t), ', 7?) — 7] (711,712)’ < Ce *Mw(x). (6.7)
Hence, by and (6.7), the bias of (n',7?) is such that

|h7'r] 702 (X)‘ < 67] CMW(X)) (68)

and so

[t 2|,y <87 TCML
This means that the bias h,1 .2 is a finite-valued function and, in fact, is in B,,(R™). Actually, its w—norm is
uniformly bounded on (7', 7t?) € TT' xT12. The following result is necessary to ensure that the PIA is well-defined.

Proposition 6.4. For each (n', %) € TI' x 12, the pair (] (1", 7?) ,hy q2) is the unique solution of the Poisson equation
(6.5) for which the w1 r2—expectation of hy1 2 is zero:

e e () = [ P (X e (€)= 0 (69)

n

Moreover, hpi 2 is in C*(R™) N By, (R™).

Proof. A slight variation of the vanishing discount technique of Section [5.2| gives us that, for fixed (n',7?) €
TT' x TT2, the Poisson equation (6.5) has a solution h1 2, which is a member of C*(R™) N B,,(R™), i.e.,

J(r', ) =1 (x, 7", 7% + 1‘2~ﬁ1ﬂzx or all x € R™. .
', L) + L™ ™ Ry 2 (x) forall R™ (6.10)

The difference between the technique of Section and the one we use here, is that, instead of invoking Theorem

we invoke Corollary 3.5

To obtain first note that, by 2.7) and (6.8), h;1 2 is indeed j11 2—integrable for every (n', %) in TT' x TT2.
Then, in choose the distribution of the initial state to be 1 2 and so follows from Fubini’s theorem and
the invariance of p,1 2. Moreover, the fact that h,;1 .2 is in B, (R™) follows from (6.8).

On the other hand, the fact that J (n',71?) coincides with the ergodic payoff ] (7', 7?) in is a direct conse-
quence of the proof of Proposition[5.4]and the part that adresses uniqueness in Theorem 5.5[i).

Next, to ensure that 1 .72 equals the bias h1 .2 in for all (71] , 712) € T x 12, we can use Theorem
on h1 2 (x(t)) to obtain

t
EF ™[R e ((8)] = o ez () + T (' 7%) t —ET U T (x(s), ) ds} :
0
This implies

R 2 (x) = BT 7 U; (v (x(s), ', %) =] (', 7)) ds} F R [R 2 (x(1)] - (6.11)

Since h1 2 is in By, (R™) for all (n',71%) € TT' x T1?, we see that the uniform w-exponential ergodicity condition
(2.12) yields that the second term of the right hand side of (6.11) converges to p 1 2 (ﬁ,ﬂ Yﬂz) as t goes to infinity;
but, by , this last limit becomes zero. Therefore, letting t — oo in both sides of (6.11)), we obtain

h (r (x(s),7",7*) —J (n',7*)) ds|,
| |

0

X

Flnl 2 (X) = Eﬂ] e |:

which coincides with the bias h1 . defined in (6.6). These facts yield also uniqueness of solutions to equation
(6.5), and Proposition [6.4] follows. O
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6.2 Convergence

This section is intended to prove that the PIA converges. But first, we present the following extension of [46)
Lemma 4.5]. Part (b) of Lemma [6.5, along with (6.3) gives that if J (n},,7%) = J (n} . ;,72 ;) in the PIA, then

7t} 72.) is a saddle point of the average SDG.
m> T p g

Lemma 6.5. Let (7', 7w%) € TI' x T1? be an arbitrary pair of randomized stationary strategies. Let 7t} € TI' be such that
Ty p Ty 8 X

J(rhm?) = sup [r(x @) + L7 R(x)| (6.12)
peV!
= (7, ) + L™ ho 2 (x) forall x € R™, (6.13)

and let 2 € T12 be such that

Jnf [r (7 P) + L PRy o (x)] r (%, 72) AL R o (x) (6.14)

forall x € R™. Then

(@) J (nl,n?) <J(nl,n?), and

(b) if ] (n',m2) < J (ml,m2), then (nl,n2) is a saddle point of the SDG with average payoff.
Proof. The relations (6.12)—(6.14) imply

r(x, L, )—HL”**”*h 12 (X)
< r(x,mlm )—HL”*'” M 2 (x)
= J(m, ﬂz)
An application of Proposition[5.4]yields (a). Part (b) of the result is immediate from (a) and (5.10). O

Proposition [6.6| guarantees the existence of a pair of policies (7,7t2) in TT' x TI? that satisfies that, for every
fixed x € R™, there exists a subsequence my = my(x) of {m} such that

(100, (1X), 72, (%)) = (7l (%), 72 (1x)) as k — oo (6.15)

in the topology of weak convergence of V! x V2. This type of policy convergence was first introduced in [87,
Lemma 4] for the case of nonstationary, deterministic, discrete-time policies. It can also be found in [88} Proposi-
tion 12.2] and [45, Theorem D.7]. In this case we say that the sequence { (7}, 7% ) : m =1,2,...} converges in the
sense of Schiil to (], 7).

Proposition 6.6. Let {(n),n%):m=1,2,..} C TI' x T be the sequence generated by the PIA. If Assumptions
. . and - hold, then, there exists (ﬂl,nﬁ) € T x T1% such that (m),n2) is the limit in the sense of Schiil of
=1,2,.
Tl m :

Proof. Fix x € R™. By the compactness of V! x V2, we can ensure the existence of a subsequence my, = mf(x),

¢ = 1,2, such that ﬂfn (x) — 7t (x). Using again the compactness of V=12, we easily see that 7r; Y(x)isa
probability measure. Furthermore, for all B C us, by [87, Lemma 4], it (B is measurable on R™. Hence, 7t is in

T¢. This proves the result. O
Theorem 6.7. Let p > n. Let Assumptions E - qand -hold In addition, let (), 7% ) be a pair of randomized

statzonary policies generated by the PIA. Then {(m, , 75 .) : m =1,2,...} converges in the sense of Schiil to a saddle point
(7}, 72) of the average SDG. Therefore the PIA converges.
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Proof. For each pair (7}, 72)) generated by the PIA, Proposition ensures the existence of a function h,, €
C?(R™) N By, (R™) such that (6.2) holds. Now, an analogous argument to those presented in Sections and
allows us to invoke Corollary thus establishing the existence of a function h € C?(R™) N B,,(R™) such that

lim h,, =h forall x € R™.
m—oo
On the other hand, observe that Proposition asserts the existence of the limit (711, 7'[5) (in the sense of Schal) of
the sequence of policies { (7], 72 ) } generated by the PIA.

Now, fix an arbitrary state x € R™ and let my be as in (6.15). Next, in (6.2)), replace m by my and let k — oo to
obtain

J (nl,7?) =7 (x, 7}, m2) L L h(x).

We shall use Lemma [6.5]to conclude the proof. Namely, observe that in step 2 of the PIA ensures that (6.12)
holds. In addition, in step 4 yields (6.14). Hence, Lemma ) asserts that (7}, 7Z) is a saddle point of the
ergodic game and the result is thus proved. O

6.3 Concluding remarks

This chapter gives sufficient conditions under which the PIA converges in a certain class of games. The version of
the algorithm under study is an extension to the continuous—time scheme of that presented in [46] and of Hoffman—
Karp [94] algorithm. Besides, our state space and action sets are nondenumerable. Our two results, Lemma
and Theorem are inspired in [46] Lemma 4.5] and [46| Theorem 4.3], respectively.
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Chapter 7

Bias and overtaking equilibria for zero-sum
SDGs

The aim of the present chapter is to study conditions ensuring the existence of bias and overtaking equilibria in
a zero—sum SDG. We will introduce these criteria by means of the classic average optimality criterion studied in

Chapters[5|and [l

The chapter represents an extension to SDGs of some bias and overtaking optimality results for controlled
diffusions [52] and for continuous-time Markov games with a denumerable state-space [78]. In some stochastic
control problems, the concepts of bias and overtaking optimality are equivalent (see, for instance, [52]). However,
the evidence found in [78] indicates that in continuous—time games this equivalence does not hold, although this
remains an open problem for games with a nondenumerable state space.

7.1 Bias optimality

Throughout the following we will suppose that Assumptions and hold.

We recall that the set of strategies that satisfy (5.10) is denoted by (TT' x T1?) __, thatis, (7], 7Z) isin (TT" x T1%) |
if and only if

e
J(n',m?) <J(nl,n2) <J(nl,m*) forevery (m' ,m?) €Tl xTI%.

Recall as well Definition[6.3]of the bias h,1 -2 and its characterization as solution of the Poisson equation given in

Proposition
The following definition uses the concept of average payoff equilibira introduced above.
Definition 7.1. We say that an average payoff equilibrium (r}, ) € (TT' x 11?) we 15 a bias equilibrivum if
2 (X) < hag 2 (%) < hg a2 (%) (7.1)

for all x € R™ and every pair of average payoff equilibria (n',7*) € (' x T1?) . The function i 2 is called the
optimal bias function.

The next result is an extension to SDGs of [52, Proposition 4.2]. It gives an expression for the bias function of
(m',7?) by using any solution h of the average optimality equations (5.11)-(5.13).

Proposition 7.2. If (', 7*) € (TT' x T1?) __, then its bias h 2 and any solution h of the average optimality equations

(5.11)—(5.13) coincide up to an additive constant; in fact,
h 2 (X) = h(X) — Hnt 2 (h) fOT’ all x € R™. (7.2)
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Proof. Let (n',m*) € (TT' x T1?) __ be an arbitrary average payoff equilibrium. Then (', 7*) satisfies Theorem
B.5li) with ] =V, i.e.,
V=r(x,n )+ L™ ™ h(x) forall x € R™. (7.3)

In addition, the Poisson equation for (7', 7?) is

V=r(x,n', )+ L™ ™ h 2(x) forall x € R™. (7.4)

The subtraction of (7.3) from (7.4) yields that h — h1 .2 is a harmonic function. Consequently, (7.2) follows from
Theorem[A.T) Lemma and (6.9). O

If the optimal bias function h,1 > exists, then, by Proposition it is in C2(R™) N B,,(R™) for any bias equi-
librium (7}, 72).
Let (TT" x T12), . . be the family of bias equilibria. By Definition 7.1}

(T x112) . C (1" x TT?)

ae’

Let (J,h) € R x (CZ(R“) N BW(R“)) be a solution of the average optimality equations (5.11)—(5.13). We define
for every x € R™ the sets

mx) = {(p eV':J= inf [r(x,0,)+L*"h(x)] } , (7.5)
Pev?

M (x) = {Ll) eV2:]= sup [r(x,9,%) + L h(x)] } . (7.6)
peV!

We now present an extension of [78, Lemma 4.6].

Lemma 7.3. For every x € R™, TT'(x) and T1?(x) are convex compact sets. Moreover, the multifunctions x — TT' (x) are
such that T1'(+) is upper semicontinuous, and T1%(-) is lower semicontinuous.

Proof. Recall from Section that the sets V! and V2 (endowed with the topology of weak convergence) are
compact. Thus, we only need to show that TT¢(x) is a closed set ({ = 1,2). But this is a consequence of Lemma
44 in [78] and Lemma The proof that TT'(x) and TT?(x) are convex mimics that of Lemma 4.6 in [78]. The
upper semicontinuity of TT' (-) was given, for the case of controlled diffusions, in [52, Lemma 5.2]. However, it is
not difficult to see why it holds in the present case (the same goes for the lower semicontinuity of 112 (). O

Remark 7.4. By Theorem ii), (n'ym?) is in (T x T12) __ if and only if 7' ([x) is in T1' (x) and 7*(-[x) is in T1%(x) for
all x € R™.

Theorem 7.5. The set (TT' x T1%) . is nonempty.
Proof. Let (m',7*) € (TT' x T1?) __ be an average payoff equilibrium. Using the expression for the bias func-

tion h2 -2, we obtain that finding bias equilibria is equivalent to solving a new SDG with ergodic payoff. Let us
call this problem bias game. The components of this game are:

e The dynamic system (2.1),
e The action sets IT' (x) and TT?(x) for each x € R™, and

e The reward rate
v (x, 7' ) = —h(x).
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Observe that the bias game satisfies Assumptlons 2.1} . 9 and 2| Hence, Theorem- 5.5 ensures the existence
of a constant J; a function h € C?(R™) N B,,(R™); and a pair (7t such that ( (- Ix)) isin TT' (x) x TT2(x)

for every x € R™. Moreover, hand (7', 7t?) satlsfy the average payoff opt1ma11ty equatlons 1)-(.13); that is,

J = —h(x)+L" " Rhx) 7.7)

= sup [—h(x)+L“””2ﬁ(X)] (7.8)
@eTT! (x)

—  inf [—h(x)+L”"wzﬁ(X)}. (7.9)
PeT2(x)

Hence, by virtue of Theorem 5.5 lu) and (7.2), (n',n?) is a bias equilibrium. ie., (7' ,7*) € (T1' xT1?) . . By
(77)-(7.9) the value of the bias game is

T = U1 2 (—h) = V}i

Let (n',7?) € (' x T1?), . . Using ([7.2), we define
H(x) :=hm 2(x) =h(x) + Vi, (7.10)

where VY, is the value of the bias game.

Bias optimality equations
We give a characterization of bias equilibria by means of the bias optimality equations defined as follows.

Definition 7.6. We say that the constant | € R, the functions H, h € C*(R™) N By, (R™) and the pair (n',7?) € TI' x 11
verify the bias optimality equations if ] and H satisfy the average optimality equations (5.11)—(5.13) and, in addition for every
x € R™, h satisfies

H(x) = L™ ™ h(x) (7.11)
= sup L‘p’ﬂzﬁ(x) (7.12)
@€l (x)
—  inf L™ VR(x). (7.13)
PeTT? (x)

Theorem 7.7. Under our hypotheses, the following assertions are true.

(i) A solution of the bias optimality equations (5.11)~(G.13) and 11)-(7.13), with H(0) = V;,, exists, is unique, and,
further, ] =V, with V as in (5.9).

(ii) A pair of stationary strategies (r',m*) € TI' x T1% is a bias equilibrium if and only if it verifies the bias optimality
equations.

Proof. By Theorem. 5|we know that the equations (5.11] - 5.13) have a unique solutlon (V h). Now, since L™ ™

is a differential operator, it follows that, if h satlsfles ), then, so does H in ). On the other hand, the
same arguments in the proof of Theorem [7.5/ensure the ex1stence of a function, say h e C%(R™) N By, (R™) such
that (Vh, h) is the unlque solution to the average optimal equations for the blas garne with reward rate —h(-), i.e.,

(Vi h) satisfies (7.7 . Hence, from (7.10) we can see that #(x) satisfies (7.11)-(7.13).

Part (ii) follows from Theorem [5.5(ii) applied to the bias game. O

37



7.1.1 The PIA for the bias game
By the proof of Theorem the bias game can be expressed as a SDG with a particular average payoff. We will
use this and a modification of the PIA presented in Chapter|6|to find another characterization of bias equilibria.

We assume that the original SDG with average payoff of Chapter |5 has been solved, i.e., ] is the game value,
(73, 75) belongs to (TT' x T1%) _ , and h(x) = Mot 2 (%) + Bpt o2 (h) forall x € R™.

Step 1. Set m = 0. Fix 73 € TT?(x) and define Jo := —oo0.

Step 2. Find a policy n} (-[x) € TT'(x), a constant J,, and a function h, : R™ — R such that (Jm, i) is a solution

of (7.8).

Step 3. If T = Jm—1, then (7}, 7 ) € (TT' x T1%) . . Terminate PIA. Otherwise, go to step 4.

m

Step 4. Determine an average optimal strategy 72 . ; (-[x) € TT?(x) that attains the minimum on (7.9).

Increase m in 1 and go to step 2.

Analogously to the end of Section[6.1} there are some critical parts we must verify to ensure that this version of
the PIA for the bias game is well-defined and yields a pair of bias equilibria.

1. Instep 2, 7t} (+[x) is such that

Jm = sup [—h(x) I ﬁm(x)}
@eTT! (x)

= —h(x) + L TRy (x),

which is consistent with Theorem Similarly, the strategy %, (-|x) of step 3 is such that

jm = inf [—h(x)+L“3n»¢ﬁm(x)]
PYeT2(x)

—  _h(x) + L™ me Ry (x).
2. Proposition5.T|gives that —h is w1 2—integrable.

3. Lemma can be invoked to ensure the compactness of ' (x). Thus Theorem (with VT x V2 replaced
by TT' (x) x T1%(x)) allows us to extend [52, Theorem 3.2] to the context of randomized strategies. These steps
enable us to guarantee the existence of J,,, a function h,,, in C?(R™)NB,,(R™), and ¢ in TT' (x), that maximizes

)

4. Assumption Lemma(7.3)and Theorem[A 2| (with IT?(x) in lieu of V) allow the extension of [52, Theorem
3.2] that ensures that, for h,,, given, there exists 7t*(-|x) € TT%(x) that minimizes 79).

These remarks, together with Lemma [6.5]and Theorem [6.7] give that the PIA for the bias game is well-defined.

7.2 Overtaking optimality

In this section we introduce the overtaking optimality criterion and show some relations between this criterion
and bias optimality.

Definition 7.8. A pair of strategies (nt},7t2) € TI' x T1? is said to be an overtaking equilibrium in the class TI' x T1? if
for each (m',7?) € TT' x T2 and x € R™ we have

llTII_l}})l;lf UT (X) ﬂl)ﬂi) - JT (X) T[])Tti)] >0 (714)
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and
limsup [J1 (x,7t},7) — J7 (x, 7}, 7%)] <O0. (7.15)

T—oo

The set of pairs of overtaking equilibria is denoted by (TT' x T12)

oe’

Remark 7.9. If (my,m;) is an overtaking equilibrium n T x 112, then it is an average puyoﬁ‘ equilibrium To see this, it

suffices to compare the definitions of lim inf, in (7.14), and lim sup, in , with expressions (5.2} , and (5.10).
By Theoremand the definition in (5.I), we can write Jt (x, ', 71?) as follows
Jr (o 7?) = T-J (', 72) + g 2 (X) —EX 7 R e (x(T)) (7.16)
for every (m',7*) in (TT" x TT2) _ .
Theorem 7.10. If a puir of strategies (., 72) is an overtaking equilibrium in TI' x T12, then it is a bias equilibrium.

Proof. Let (n},72) € TI' x TI? be a pair of overtaking optimal strategies. Then by the Remark [7.9, we have that

%) *

(ml,mZ) € (" x T1%) . Then, by using (7.16), we obtain

Jt (x,ml, ) = Jt (x, 7' 7'(2)
= hnl 72 (X) - hrr’ ;72 (X) ]EX* o hT[l 72 (X(T)) - E: T hrﬂ T2 (X(T))> (717)
for each 7t' € TT'(x) (recall the definition of TT' (x) and TT?(x) in (7.5)—(7-6)). Equation (7.17), along with (2.13}
and (7.14), yields

h.l_nl}golf UT (X) 7-[1:) 7-[5) —Jr (X) ud ) ﬂf)} = hnl,nf (x) — h ,702 (x) > 0. (7.18)

Similar arguments show that for all m? e T3 (x),

limsup [J1 (x,7t},72) — J1 (x, 7}, )] = Mot 2 (X) = hat 2 (x) <0. (7.19)

T—oo
Inequalities (7.18) and (7.19) yield condition (7.) in Definition 7.1|for all (7}, 72) € (TT' x 11?) . Hence the pair
(7'[1 , ﬂf) isa b1as equ1hbr1um. O

Theorem 7.11. Suppose that a pair of strategies (n),72) € TI' xT12 is a bias equilibrium, then it is an overtaking equilibrium
in the class (TT' x T12)

ae’

Proof. Let (m',7*) in (TTI' x T1?)  be a pair of average optimal strategles and let (7I 712) e (M x1?),. .. Then

(ml,m2) isin (TI' x T1%) . Using (7.16) yields (7.17) again. Hence, 6.9) and (7.1) give

liminf [J1 (x, 7}, 72) = Jv (x, 7', 7)) > 0.

Similarly
limsup [J1 (x, 7}, 77) — J7 (x, 7, 7*)] <0
T—o0
Hence (7}, 72) is an overtaking equilibrium in the class (TT' x TT?) _ of average payoff equilibria. O

Remark 7.12. Theorem shows that overtaking optimality implies bias optimality in the class TI' x TI? of stationary
strategies. On the other hand, Theorem gives a partial converse; the results in [78] lead us to think that the full converse
holds only in the class (TI' x T1?) __, but this remains an open problem. In contrast, overtaking and bias optimality are

equivalent in control (or single—player) problems in the class TI' x TI? of stationary strategies; see, for instance, [52) Theorem
5.5].
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7.3 Concluding remarks

This chapter presents a unified analysis of bias and overtaking optimality for a general class of zero-sum SDGs.
Under suitable hypotheses such as uniform ellipticity in Assumption[2.1(b) and the uniform w-exponential ergod-
icity in (2.13), we have shown the existence and give characterizations of bias equilibria and their connection with
overtaking equilibria. Moreover, we provide an algorithm to find bias equilibria in terms of the so—called bias game.

Our characterizations follow a lexicographical type in the sense that, first, we identify the set of average payoff
equilibria, and then, within this set, we look for some special strategies. Finally, we show that overtaking equilib-
rium implies bias equilibrium (Theorem[7.10). However, the results in [[78] lead us to believe that a partial converse
holds: bias equilibria are overtaking equilibria in the class of average payoff equilibria. This is an open issue.
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Chapter 8

Final remarks

In this thesis we have studied several infinite-horizon zero-sum games for a general class of Markov diffusion
processes. Our work begins with the study of two basic optimality criteria, namely, discounted payoff (in Chapter
M) and average payoff (in Chapters [5| and [6). We used an alternative method —with Theorem [3.4] in its core—
to prove the existence of value functions and saddle points under these two criteria, and we used Chapter [f]
to propose an algorithm to characterize average payoff equilibria and game’s value for the corresponding SDG.
Moreover, we also gave conditions milder than those given in [43] to prove that the Poisson equation has a
solution h;1 2 € C?(R™) N B,y (R™) (see Proposition .

In Chapter [£.2)we studied a special class of zero-sum SDGs under what we called random discounted payoff cri-
terion. We started by replacing the fixed parameter « > 0 by the continuous—-time Markov chain «(-) and we used
this process to index the SDE so that we had a Markov-modulated diffusion. We proved the existence of
saddle points and value functions as we did in Section .1} A major difference between our approach and that of
[90, 91] is that we consider that the switching parameter is present in both: the diffusion itself, and the discount fac-
tor. Actually, our Theorem [4.19]is suitable for the problem we present here, as well as for the examples presented
by Song, Yin and Zhang in their works.

We also provided a proof for the existence of overtaking optimal policies and gave two characterizations of
these policies. In particular, we related the concept of overtaking optimality with the concept of bias optimality.
We also presented a modified version of the PIA that looks for bias optimal strategies in (TT' x TT?)  the set of
average optimal strategies.

Nevertheless, there are several research lines in the theory of SDGs that our work leaves open. For instance:

1. Solving a non-stationary version of the discounted payoff criterion and proving an analogue of Theorem
for this problem. This would imply to work with Cauchy problems of parabolic type, thus applying the
results in Kolokoltsov [58]59], Reed and Simon [84], and Ladyzhenskaya and Uraltseva [65] to the context of
our interest.

2. Finding a suitable PIA for the discounted payoff criterion.

3. Propose appropriate applications, in economics, environmental or actuarial sciences, of our results on (i) the
random discounted payoff criterion (we think that the examples of [90} 91] make a fair point of departure);
and (ii) the bias and overtaking equilibria (an extension to the work of Kawaguchi and Morimoto [56] seems
appealing enough in this instance).

Our work is also a collection of applications of the powerful Theorem [3.4|and within that approach lies the key to
a possible extension of our results: discounted and ergodic payoff criteria for nonzero—sum SDGs.

We will devote our future efforts to finding answers in these and other related topics.
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Appendix A

Frequently used results

This Appendix presents four crucial results that are repeatedly quoted along our work.

For our first two results, Q is a bounded subset of R", (7', 7t%) € TT' xT1%, h € WP (Q), and x(+) = {x(t) : t > 0}
is an almost surely strong solution to

dx(t) = b (x(t), 7', %) dt + o (x(t)) dW/(t)

with initial condition x(0) = x, where b : R™ x TT' x TI> — R™ and o : R™ — R™*™ are given functions, and W(-)
is an m—dimensional Wiener process. We also assume that L7 h(-) is the infinitesimal generator of x(-); and is
given by

L™ h(x) = <Vh() (x, 7', %)) + %Tr[[ h(x)] - alx)]

Zb X, 70, 70 ) Oy, hix Zau XX) h(x),

i=1 i,j=1

with a(-) as in Assumption 2.T)c).

For the sake of completeness, we list first Dynkin’s formula. See [57, Corollary 6.5].

Theorem A.1. Let T be the first exit time of Q (cf. @.13)). If Assumption2.1|and Remark[2.5|hold, then
1 2 1 2 T 1 2
E7T ™ [h(x(t))] =h(x)+EZ ™ U L™ ™ h(x(t))dt] .
0

The next result is a tuned version of [72, Theorem 2.1]. Let V* be the space of probability measures on U*
endowed with the topology of weak convergence ({ = 1,2).

Theorem A.2. If Assumption 2.1, Remark 2.5 Assumptions[2.6|and [2.12, and Remark [2.13| hold, then, there exists a pair
(ml,m2) € 1" x T12 such that

T (x, 7L, %) FL™h(x) = sup {r (x, @, ) +L‘p’“2h(x)}, and
peV!
. 1

r(x, ' 72) FLT O h(x) = wlé‘l\iz {r (x, ') + L7 “ph(x)}.

Now let Q be as in Chapter [3} that is, a bounded, open and cormected subset of R™. Assume that the space
V' x V2 has a single element, namely (¢, ). Recall as well definitions (3:1) and (3.5).

For every x € R, « > 0, and h in C?(R™) let
B (6, 0,1,y &) 1= (VR(x), b (x, @, 1)) — ah(x) + 7 (x, @, ) , (A1)
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with b as in and r as in (2.21). We also recall
1
LLPR(x) =5 (x, @, hy &) + 5Tr [HR(x)a(x)], (A2)
with a as in Assumption 2.1(b).

We now borrow a version of Theorem 9.11 of [36] that is appropriate to our context.

Theorem A.3. Let h € WP (Q) be a solution ofﬁg’q’h =& with & € LP(Q), and LY as in (A.2). Suppose that a
satisfies Assumption 2.1} and that b and r are as in Remarks [2.5]and respectively. Then, for any open connected subset
Q' of Q, there exists a constant Co that depends on n,p, x, Q and Q' such that:

IRlwe.e 0y < Co (INzn )+ 1E =T, @, W)l o) ) -
Observe that (-, ¢,V) is in LP(Q) whenever Q) is a bounded set. Indeed, by Assumption b), we have that
1/p 1/p _
([ momoomrac) <M ([ wbarax) < Msup il < oo
(o] (o] xeQ
where |Q| denotes the volume of the closure of Q.

Our final result ensures the convergence in the space of weighted functions B,, (Q) of certain sequences.

Lemma A.4. Let B,,(Q) be the space in Definition (with Q rather than R™). In addition, consider a sequence {vm} of
functions in By, (Q), and suppose that there exists a real-valued function v on Q such that v, — v uniformly. Then v is in
B (Q).

Proof. By the triangle inequality and the uniform convergence of {vi,} to v, for each € > 0, there exists a natural
number N such that, for all m > N,

V(x)| — v (%)] < v(x) —vm(x)| < € forall x € Q.
This yields

vx) < et vm(x)l
< e+ |vml,, w(x) forall x € Q.

Since w > 1, the claim follows. O
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Appendix B

Proof of Theorem 3.4

This Appendix requires definitions and (or (A.1) and (A.2)). We will also require the definition of Q) in
Section[3l

B.1 Proof of Theorem [3.4(i)

We first show that there exist a function h in W?P?(Q) and a subsequence {my} C {1,2, ...} such that, as k — oo,
hm, — hweakly in W?P(Q) and strongly in W' P (Q). Namely, since W*P (Q) is reflexive [1, Theorem 3.5], then,
by the Banach-Alaouglu Theorem [1} Theorem 1.17], the ball

H = {h EWHP(Q): Mlwzr ) < M]} oy

is weakly sequentially compact. Hence, the compactness of the imbedding W2P(Q) — WP (Q) [} Theorem 6.2
part II] implies that # is precompact in WP (Q), that is, there exist a function h € WP (Q) and a subsequence
{him,} ={hm} C H such that

hm — h weakly in W2HP(Q) and strongly in WwhP(Q). (B.2)
The second step is to show that, as m — oo,

sup inf B0, @, 0, him,y Xm ) — sup inf b(, @, ¥, h, «) in LP(Q). (B.3)
peV! Pev? peV! Pev?

To this end, recall (A.1) and note that, given x € Q, two functions h € W?2P(Q)and h,,, € H,and a pair of positive
numbers « and oy, the following holds.

P

sup inf b(x,@,p,h,a) — sup inf b (x, 0,1, Nm,xm)
QeV! Ppev? peV!? Ppev?

< sup |{6 (X,(p,ll),h, O()—B(X,(p,l,l),hm, ocm)‘p

(@, p)eVIxV2
= sup  [((Vh—Vhy) (x),b(x, @, %)) — (ah — atmham) (x)I7

(@, p)EVTIXV?2 .
< ((VR=Vhn) (X)] sup  [b(x, @, ¥)[+ [(ah — xmbhm) (X”}

(o, p)eVIxV2 .
S [Zmax{l(Vh—th) (X)‘ Sup |b(X,(p,ll))|,‘(th—mehm) (X)|}‘|
(o, )eVIxV2

< 2P [((VR = Vhy) ()] C(Q))P + [(ah — &) (x)P] . (B4)

45



The existence of the constant C(Q) follows from the boundedness of the set Q and from Remark Hence

P

sup inf b (x, @, P, h, &) — sup inf b (x, @, P, i, ot )
(pEV] Ye \'& (p€V1 e V2

1<i<n

< 2P [[(Vh = Vhy) (0] C(Q)IP + 2P [h(x)| |x — &Xm| 4 [atm | [(h — M) ()17
< 2P [(Vh = Vhp) (x)] C(Q)]P + 2P 2 max {[h(x)] & — &, [xm] [(h —hm) (x)[1P
< 2P [[(Vh—Vhy) (x)| Q)7 +47 (h(x)[” ot — [ + [ [P [(h — b)) (x)[7)
P
< [2C(Q)PnP [1rgla<xnl(a =0y hi) (x )I} + 47 ()P ot — otm[” + ot [P [(h — ) (x)]7)
P
< [C(Q)n)? [max |(0x;h— Ox, him) (x )q +4° (IR()P Joe — otm|” + |t [P (R =) (X)[P) . (B5)

It follows from (B.5) that, for h,, and hasin (B.2) and x € Q,

P
sup mf b(, o, ha)— sup 1nf B, 0, P, hm,y om)
QeV? Ppev eV Ppev v (O7)
< RCc(@Qml? n1réliagxn|\axih 6X1hHU, (Qr)
P
 (41Mer o) ) lotm — o+ (4P o =20 g - (B.6)

Hence, as m — oo, it follows from (B.2) and hypothesis (d) that the right-hand side of tends to zero; thus
proving (B.3).

The existence of the constant C(Q) in (B.4) also gives that for each 1 in L7 (Q),

1 [CQ)* ¢
5 UQ (1- Tr [aH (hyn — h)]) (x)dx‘ S

2 (B.7)

JQ (l' aiixj (hm — h)) (x)dx|.

Lj=1

Thus the weak convergence of {h,,,} to h in WP (Q) yields that the right-hand side of converges to zero as
m — oco. Combining (B.3), (B.7), and hypothesis (c) to see that for every 1 in L7T(Q),

J (1- [Lah—&]) (x)dx = lim J (1 [Lahm — &m]) (x)dx = 0.
Q Q

m—o0

This fact, along with Theorem 2.10 in [66], implies (3.4), i.e.
]T:ah =¢ in Q,

which completes the proof of part (i).

B.2 Proof of Theorem 3.4 (i7)

Let us introduce the following auxiliary results.

Lemma B.1. [36, Theorem 9.19] Let h € WP (Q) be a solution of the equation Lo h = & in Q. If the coefficients of L., and
& belong to C®P (Q), with B €]0, 1[, then h is in C>P(Q).

Lemma B.2. Consider a sequence of functions {f,} in CON (Q) with 0 < n < 1. Suppose the existence of

e a uniform bound H* for the sequence {fy,}in CON(Q), i.e., form =1,2,.

||fm||c0»n(QT) < H%, (B.8)

o a real valued function f on Q, such that fy, converges uniformly to f on Q; i.e., for every € > 0 there exists M(e) €
{1,2,...} such that, for all m > M(e) and all x € Q,

[fm(x) —f(x)] < e. (B.9)
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Then f belongs to COM(Q).
Proof. Consider f,, € C%"(Q) and observe that, by (B.8) for all x,y € Q,

If(x) —fly)l < If(x) = fm (X)) + [fm(x) = fm (Y + [fm (y) — f(y)]
< sup [f(x) — fm(x)] + H x —y[M + sup [fm (y) — f(y)l.
x€Q yeQ

Therefore, by (B.9), letting m — oo, [f(x) — f(y)| < H*|x —y[" for all x,y € Q. Hence f is in CO(Q).

O

To prove part (ii) of Theorem we need to verify first that, if p > n, then h,,, — hinC""(Q) foralln < 1— >

By the Rellich-Kondrachov Theorem [, Theorem 6.2, Part 1], the imbedding WP (Q) — C'"(Q), for0 <n <
1 — 3 is compact; hence, it is also continuous. This implies that the set 7 in (B.1) is relatively compact in chn(Q).

Recall now that, from the proof of part (i), # is weakly sequentially compact. Hence, there exist h € WP (Q) and

a subsequence {h,, } = {hin} C H such that h,, converges weakly to h in WP (Q) and strongly in """ (Q).

To complete the proof of part (ii), suppose that & is in COP(Q) with p <n < 1— %. We wish to show that the

limit function h is in C>(Q). To do this, we will proceed in several steps.

First we will show that, for each m > 1

sup inf b (-, @, P, him, o) isin COMN(Q),
(pe\/]Il)EVz

and that the sequence of functions

sup inf b(, @, hm, otm) is uniformly bounded on coOn(Q).
peVv! Pev?

Afterwards we will show that

sup inf B (-, @, P, him,y ot ) — sup inf '6(-,(p,1,l),h, «) uniformly on Q.
peV! Ppev? peVv! Ppev?

Then we will invoke Lemma to conclude that

sup inf b (-, @, h, ) isin CON(Q).
peVv! Ppev?

Since we assumed that & is in C% P (Q), we will see that

1Tr [aHh] = & — sup inf b (-, @, h,x) isin COB(Q).
2 peVv] Ppev?

Hence part (ii) will follow from Lemma

Let us proceed with the completion of the proof.

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

Recall the definition of # in (B.I). To prove that (B.10) and (B.11) hold, observe first that for all x,y € Q, oty > 0

and h,, € H,

sup inf B(x, @, b, hm, om) — sup inf B(y, @, b, hm, otm)

QeEV! PpeVv QEV! pe
< sup |B(X>(p)1b)hm>“m) *B(yﬁp)w)hm)“m”
(@, p)eVTxV?2

= sup  [(Vhm(x) = Vhn(y), b (x, 9, 1))) + (Vhin(y), b (x, @, 1) — b (y, @, )
(@ )EVT X V2
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—otm [N (X) = i (Y)] + [ (%, @, ) — 7 (y, @, D)]|

< sup [b (X) (P>1|))\ |th(x) - th(y” + sup b (X) (p)lb) —b (y) (P,lb” |th(y)|
(e h)eVIxV?2 (e p)eVIxV2
+(xm |hm(x) - hm(y” + SUP |T (X) (P)ll)) -T (U» (P»ll’”
(@ )eVTixV2
< n max [0x hin (x) = 3x; han (W) €(Q) + [Vhin (y)| Crlx — yl + & [ (x) — hun (y)| + C(R)x — yl,

where C(Q), C; and C(R) are the constants in the Remarks and In this case, R stands for the radius of a
ball By such that QO C Bg. Hence

sup ll’lf /B (%, @, ¥y hiny X ) — sup  inf 6 (Y, @, ¥, hm, o)
pevI WeV pev1 WEV?

< TLHhm”chn )|X_9|HC(Q)+|V}1 ()|C1|X_U|+0(m||hm|‘c1m(g)‘X_U|H+C(R)|X_U|- (B.15)

Now note that, by the continuity of the imbedding WP (Q) < C""(Q), there exists a so—called imbedding constant
M, such that

max ¢ sup [hm (x)], max sup [0, hm(x)l ¢ < [[hmllern o)
xeQ 1S1Snx€(—l
< M; ||hm||W2xv(Q]
< MM, (B.16)

with M as in the hypothesis (b). Therefore, combining (B.15) with (B.16) yields

sup ll‘lf 6 (%, @, ¥, hyny ) — sup  inf B (Y, ¢, ¥, hin, )
(PGV] bev (PG\/] ll)EV

< MaMilx —y["nC(Q) + Cilx —yInMaMy + amMaMilx —y[" + C(R)|x —yl. (B.17)
Now, if [x —y| < 1, then (B.17) yields

§ HQLHX_U‘”)

sup inf b (x, @, b, hm,&m) — sup inf b (y, 9, ¥, hm, otm)
pev1 bEV? pevi be

where HE,P =M ;MnC(Q) + CinM1M; + an M1 M; + C(R). Observe that, since the sequence {x, } converges,
there exist a constant Hj such that H] > HLP forallm € {1,2,...}, and so

sup lnf 6 (%, @, ¥, A,y ot ) — sup lnf 6 (Y, ©, %, hm,y ot

< Hix —yP. (B.18)
peV! be peVv]

Otherwise, if [x —y| > 1, let K* := max, ¢ [x — yl. Hence, from again,

sup lnf 6 ,(P,lb hma(xm)_ sup wlnf 6 U (P,IJ) hm)(xm) < Hg”X—U\n)

eV we peVv!

where Hg] = MiMonC(Q) + CK* nM M 4+ o M1 M, + C(R)K*. Yet, by the boundedness of the convergent
sequence {x, }, there exists a constant H} such that H3 > H%ZL) forallm € {1,2,...}, and

< Hjk—yl. (B.19)

sup 1nf 6 (%, @y, ¥y hiny ) — sup  inf 6(9»(9>¢)hm>‘xm)
pevI WeV eeV1 Ppev?

From (B.18) and (B.19) we obtain (B.10) and (B.T1).
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We will now see that (B.12) holds. Let h,, and h be as in (B.2) and &, — « as in hypothesis (d). Then, by (A.1),

p sup mf b (x, @, P, hm, ot ) — sup 1r1f b (x, @, ¥, h, a)

€O |pevt VEV peVv1 we
< P sup |B (X)(pslb)hm)o‘m)*g(x)(psw)hs O‘)‘
cQ (pap)eVvixv2
< C(Q) ) supl(dy,hm — dhy,) (x)| + sup [hun (X)] - lotm — & + acsup |(hyn —h) (x)]. (B.20)
i=1x€Q xeQ x€Q

Moreover, by (B:16) we have sup, _x [hm(x)| < M;M,. Consequently, since hy,, converges to h in C"#(Q), the
right hand side of (B.20) tends to zero as m — oco. This gives (B.12).

Since (B.10) and (B.12) hold, we may use Lemma[B.2]to assert that (B.13) holds.

To conclude the proof of (ii), observe that a direct calculation yields (B.14), and so Lemma completes the
proof of part (ii). Hence, the proof of Theorem B.4]is now complete. O

B.3 Notes on the proof of Theorem [4.19|

The proof of Theorem resembles that of Theorem 3.4 We will state a few remarks on the details. Recall the
definition of b given in ( D that is

B(X) 0(,(p,1|),h1,. ) - <Vhl (X o, (P»Ur))>_(xhl( )+T Xy o‘a(pa +unh’

Our first step is to show the existence of a subsequence {hink} of {h]m} , whose convergence to h is weak in
m
W?P(Q) and strong in WHP(Q) forj = 1,..,N

To do this, we repeat, for j = 1,...,, N, the argument that led us to (B.2). Then, it is necessary to prove that, as
m — oo,
sup 1nf b ( ,~,(p,1|),hln, hN) — sup 1nf b (, , @, R, hN) (B.21)
peV! be eeV! pe

in £P(Q). Observe that (B.4) changes to

P

sup inf b (x, a4, @, W, ), W) — sup inf 'B(x i, @,y hY L hY)
peVv! eV QeEV! Ppev

< sup |/B (X) o‘is(p»lmb)h])"')hN) *B (X) 06'1><P>1l)»h11m--->h§1)|
(@ 0)eVTIxV?2
N P
< sup  |{(Vhi, —Vhi)) (x),b(x, xi, 9,1)) + Z (x)) qi
(@, bV x V2 —
‘ ' N
< [ [(Vhi, = VRE) ()] CQ) +| > (W, ) i
j=1
N P
i i alfa j o
< (| (Vhi, — Vhi) (x)| C(Q) + Jmax (W, (x ]:] qij )
But, by the conservativeness of the chain x(-), we have that Z;\’ _; qij = 0. Hence,
o)

sup inf B(X o, @, P, hly e W) — sup inf b (x, a4, @, W, R, RY)
pev1 WeV pev1 WEV?
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< (|(Vhi, = Vhi) ()| C(Q)" =0 as m — co.
Thus, using the same steps as (B.6), we prove (B.2).

The relation (B.21), an analogous inequality to , hypothesis (c) and [66, Theorem 2.10] yields (4.38). (See
the last paragraph of Section[B.1})

To prove part (ii), we need to verify first that, if p > n, then hp, = W in Q) for0 <n < 1— % and
j =1,...,N. This is essentially the same we did in the first part of Section[B.2]

Afterwards, we assume that £ € COP(Q) withp <n < 1— %, and show that the corresponding relations to
(B.10) and (B.11) (in the present context) hold, that is:

sup inf b(,, o, @, 0, hl, .., hN) isin CON(Q), (B.22)
(\OEVI Ppev?

and that the sequence of functions

sup inf_ b (-, i, @, W, h),...hN) is uniformly bounded on C"(Q). (B.23)
peV! Ppev

To this end, it is necessary to obtain the following analogous of (B.15).

sup inf B(X i, @, ¥, . W) — sup  inf B(y,ocl,(p,lj) Ry e )
peVvi eV peVv1 VEV
< nfh 5 x—y"CQ +|vw~ )| Crlx =yl + o [N [ler ) I = UM + C(R)x =y,

mHC’ n(

This relation can be taken as the point of departure to argue as in (B.16)—(B.19), and therefore, obtain (B:22) and
(B.23).

The convergence of hi’ni toh, forj=1,..,N, yields

sup inf B( o, @, W, My hiy) — sup  inf 6(~,oci,(p,1]),h1,...,hN) uniformly on Q,
eV WEV pev1 WeV?

and by Lemma [B.2 we deduce that

sup inf B(,O(i,(p,ll),h1,...,hN) isin CON(Q).
@eVv] pev

This last assertion, combined with an analogous relation to (B.14), and Lemma [B.1|yield part (ii).
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