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Resumen

Este trabajo lidia con juegos diferenciales estocásticos (JDEs) de dos personas y suma–cero. Estudiamos la existen-
cia de funciones de valor y puntos silla para estos juegos con varios criterios de pago en horizonte infinito.

A lo largo de nuestra tesis usaremos un muy importante resultado que involucra intercambios de límites en
una sucesión de problemas de Dirichlet de tipo elíptico. Esto nos permitirá:

• Probar la existencia de (i) funciones de valor y (ii) puntos silla para JDEs con pagos descontados en horizonte
infinito.

• Invocar la técnica del descuento desvaneciente y el algoritmo de iteración de políticas (AIP) para caracterizar
el valor y los equilibrios de un JDE con pago ergódico.

• Estudiar criterios avanzados de optimalidad basándonos en la búsqueda de equilibrios ergódicos.

Aquí algunas de nuestras contribuciones.

• Damos condiciones suficientes que garantizan la existencia de equilibrios de Nash para cada criterio consid-
erado.

• Caracterizaremos la función de valor de un JDE de suma cero como la solución de cierta ecuación de Isaacs
y daremos condiciones suaves bajo las cuales, tal función satisface la ecuación de programación dinámica en
el sentido clásico.

• También presentamos una extensión de los resultados en [32, 33, 90, 91] al caso de JDEs con tasa de descuento
aleatoria.

• Proponemos una extensión del AIP para JDEs de suma cero con pagos ergódicos.

• Damos una caracterización de los equilibrios llamados de sesgo y rebasantes.

iii



iv



Abstract

This work is about two–person zero–sum stochastic differential games (SDGs). We study the existence of values
and saddle points for these games with several infinite–horizon payoff criteria.

Throughout our thesis we shall use an important result that involves interchanging limits in a sequence of
Dirichlet problems of elliptic type. This will allow us to:

• Prove the existence of both, (i) value functions and (ii) saddle points for SDGs with discounted payoffs in
infinite–horizon.

• Invoke the vanishing discount technique and the policy iteration algorithm (PIA) to find the value and saddle
points of a SDG with ergodic payoff.

• Study advanced optimality criteria based on the search of ergodic equilibria.

Here are some of our contributions.

• We give conditions ensuring the existence of Nash equilibria for each criterion under consideration.

• We characterize the value function of a zero–sum SDG as the solution of certain Isaacs’ equation and provide
mild conditions under which, such function satisfies the dynamic programming equation in the classical
sense.

• We also present an extension of the results in [32, 33, 90, 91] to the case of SDGs with random rate of discount.

• We propose an extension of the PIA for zero–sum SDGs with ergodic payoffs.

• We provide a characterization of bias and overtaking equilibria.
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Chapter 1

Introduction

Dynamic games can be classiffied according to the system itself (for instance, we can have deterministic or stochas-
tic systems) and/or by their performance criteria (for instance, total, discounted or ergodic payoff criterion). Games
can also be classiffied according to their rules. For instance, cooperative and noncooperative games; among this last
category, we can find the well–known zero and nonzero sum games. In this work we deal with several infinite–
horizon zero–sum dynamic games for a general class of Markov diffusion processes, which we will refer to as
stochastic differential games (SDGs). Indeed, our main objective is to give conditions for the existence, character-
ization, and search of saddle points for four different types of infinite–horizon criteria, which we classify as basic
and advanced.

The basic criteria we shall study in this thesis are the expected discounted payoff and the long–run expected
average (or ergodic) payoff in a zero–sum game. These two criteria have complementary aims; while the former
focuses on early periods of the time horizon, the latter concerns only asymptotic behaviors, and it does not take
into account optimality for finite intervals. To overcome these two extremal situations we consider other optimal-
ity criteria which are more selective, and can be seen as “refinements” of the average payoff criterion. They are
so–named because they concern policies that optimize, for each player, the average payoff but in addition they
have some other convenient features. In this work, we shall study some of these refinements, namely bias and
overtaking equilibria.

Throughout our thesis we shall use an important result that involves interchanging limits in a sequence of
Dirichlet problems of elliptic type. This will allow us to:

• Prove the existence of both, (i) value functions and (ii) saddle points for SDGs with discounted payoffs in
infinite–horizon (for a precise definition of these concepts, see, for instance, Sections 4.1.2 and 4.1.3).

• Invoke the vanishing discount technique and the policy iteration algorithm to find the value and saddle
points of a SDG with ergodic payoff (see Chapter 5).

• Study advanced optimality criteria based on the search of ergodic equilibria (see Chapter 7).

We acknowledge the great influence of professors Arapostathis, Borkar and Ghosh [3, 4, 5]; Guo, Hernández–
Lerma, Jasso–Fuentes, Lasserre and Mendoza–Pérez [23, 24, 38, 39, 40, 44, 45, 46, 47, 50, 51, 52, 53, 54, 68]; and
Gilbarg and Trudinger [36] for inspiring and motivating our ideas.

1.1 Related literature

There are several sources for studying the basics on stochastic games. In our present case, we have used [50]. As
for SDGs, we could refer to Hamadéne and Lepeltier’s works (e.g. [41]). They focus on several properties of a
backward stochastic differential equation (SDE) and they use some Girsanov–like results to find value functions.

As for the literature on the basic criteria, the discounted payoff criterion for SDGs has been analyzed in Ben-
soussan and Frehse [9], Fujita and Morimoto [29], Swiech [92] and Kushner (see, for instance, [62]). The controlled
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version of this problem has been studied for many classes of systems. For non–degenerate diffusion processes
we refer to Kushner [60], in which the drift of the diffusion is linear in the control variable. More recent works
concerning nondegenerate diffusion processes are Arapostathis et al [4] and Borkar [15]. All these works assume
boundedness from below of the cost rate. Other works include that by Guo and Hernández–Lerma [38], which
considers a continuous–time controlled Markov chain with a countable state space; some more general control
Markov processes are studied in Hernández–Lerma [44], and Prieto–Rumeau and Hernández–Lerma [79].

On the other hand, the controlled version of the random discount problem has been studied, for discrete–time
systems with denumerable state space, in the works by González–Hernández, López–Martínez, Pérez–Hernández
and Minjárez–Sosa (see [32, 33], and the references therein). Jasso–Fuentes and Yin [55] and Ghosh, Arapostathis
and Marcus [4] studied the discounted payoff criterion for controlled switching diffusions and we borrow some
of their ideas on the form of the corresponding Bellman equation of the problem we present. Song, Yin and Zhang
[90, 91] analyzed SDGs similar to those we present here.

Regarding average payoff games, Borkar and Ghosh [18], Kushner [63], and Morimoto and Ohashi [70] have
already studied the ergodic payoff criterion for SDGs. For control problems with this criterion, one of the earliest
works was the paper by Kushner [61]. He used dynamic programming to study a class of diffusions with bounded
coefficients with additive structure. Borkar and Ghosh [16, 17] worked in a similar context but approaching the
problem by using occupation measures. The unbounded case for control problems has been studied by Arapos-
tathis et al. [3, 4], and also by Ghosh, Arapostathis and Marcus [31] for switching diffusions, except that the cost
rate is supposed to be bounded below.

Overtaking optimality, which we study in Chapter 7, was introduced in the context of economic growth prob-
lems by Frank P. Ramsey in 1928 [83]. However, its present weaker form was introduced by H. Atsumi [6] and
C.C. von Weizsäcker [95] in 1965 for another class of economic problems. Later on, this sort of optimality was
used in many papers on Markov decision processes and control theory. Overtaking equilibria were introduced at
the same time by Brock [19] in the theory of differential games, and by Rubinstein [86] for repeated games. For
discrete and continuous–time games, overtaking equilibria have been obtained for several particular classes of
deterministic and stochastic games, see, for instance, the works by Carlson [20, 21] and Nowak [75]. The existence
of an overtaking optimal policy is a subtle issue, and there are counterexamples showing that one has to be care-
ful when making statements on overtaking optimality; see, for instance, Nowak and Vega–Amaya [76] and the
Remark 10.9.2 in Hernández–Lerma and Lasserre [45]. The bias optimality criterion for stochastic discrete–time
Markov games was implicity introduced in Nowak [73, 74]. Prieto–Rumeau and Hernández–Lerma [78] studied
these criteria for a continuous–time class of Markov games, whereas Jasso–Fuentes and Hernández–Lerma [52]
gave conditions for the existence of bias and overtaking optimal strategies for controlled diffusions.

The policy iteration algorithm we use for the ergodic payoff criteria is inspired in the controlled versions by
Hernández–Lerma and Lasserre [46], Arapostathis [5], and by a finite game version developed by Hoffman and
Karp [48] modified by Van der Wal [94]. It is important to mention that the policy iteration algorithm is due to
Bellman [7], although some authors credit Howard [49] for its finding. It was later used by Fleming [26] to study
some finite horizon control problems in 1963. Bismut [13] and Puterman [81, 82] studied similar problems.

1.2 Contributions and outline

Our thesis deals with two–person zero–sum stochastic differential games. We study the existence of values and
saddle points for these games with several infinite–horizon payoff criteria.

Our contributions are the following.

• We give conditions ensuring the existence of Nash equilibria for each criterion under consideration. A major
difference between our work and those by Elliott and Kalton (see, for instance [22]), is that they consider
that each player chooses his/her action regarding what the other player did in the past history, whereas we
assume that both players observe the state of the system and, independently from each other, choose their
actions.
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• We characterize the value function of a zero–sum SDG as the solution of certain Isaacs’ equation (see [26]
and [27]). A difference between our work and Fleming’s or Friedman’s is that our hypotheses ensure the
existence of the value function in all of Rn. An improvement with respect to, for instance, Swiech’s work
[92] or Hamadéne and Lepeltier’s [41], is that our conditions on the coefficients of the diffusion are milder,
and the dynamic programming equation has a classical solution rather than a viscosity solution.

• We give conditions for the existence of classical solutions to the so–called Poisson equation by means of a
relaxation of the differentiability condition in [43] on the coefficients of the diffusion that drives the system
under study. This is also sufficient to ensure the existence of a bias function in the corresponding Isaacs’
equation.

• We extend the results of González–Hernández et al. [32, 33] and Song et al. (see [90, 91]) to the case of SDGs
with random rate of discount. Mao and Yuan’s book [67] has been a great influence on this part of our work.

• We propose an extension of Fleming’s policy iteration algorithm [26] (see also [5, 94, 46, 48]) for zero–sum
SDGs with ergodic payoffs.

• We provide a characterization of bias and overtaking equilibria.

Our thesis is organized as follows.

In Chapter 2 we introduce the game we are interested in. We begin by introducing general conditions on the
game dynamics and the reward rate. We then present the family of admissible strategies, and a stability property
of the state and the action processes. We finally impose some conditions on the payoff rates.

Chapter 3 introduces Theorem 3.4, which is a crucial tool for many of our results.

The aim of Chapter 4 is to give sufficient conditions for the existence of a value function and a saddle point for
the infinite horizon game with discounted payoff. First, we work with a fixed discount factor, and then, we study
the random discount payoff criterion. In both cases we give hypotheses on the model and sufficient conditions to
ensure the existence of a value function and saddle points. In the case of the random discounted payoff criterion,
we provide an alternative version of Theorem 3.4; namely, Theorem 4.19.

Chapter 5 is devoted to the average payoff case. To this end, we establish first some definitions associated with
the average payoff context. Next, we apply the well–known vanishing discount technique to ensure the existence
of both, the value of the game and average equilibria.

In Chapter 6 we continue to study the ergodic case by introducing a version of the policy iteration algorithm
(PIA) that transforms a given game problem into a control problem. We will refer to the policy convergence in the
sense of Schäl [87, 88] to ensure the existence of saddle points for a SDG with average payoff. To be more precise,
in Section 6.1 we present the PIA, and then, in Section 6.2 we show that it converges in a suitable sense. See Lemma
6.5 and Theorem 6.7.

Chapter 7 addresses the existence of bias and overtaking equilibria. With this in mind, we characterize first the
bias problem as a new average payoff problem. We attain bias equilibria by means of the techniques of Chapter
5 applied to a new average problem. Besides, we show that there is a close relation between bias and overtaking
equilibria. We finish this chapter by introducing a modification of the PIA proposed in Chapter 6 to find bias
optimal strategies.

We conclude our work in Chapter 8 by presenting some general remarks. The rest of the thesis presents two
appendices: Appendix A contains some ancillary results that are basic for our developments and are quoted
several times along the thesis. Appendix B presents the proof of Theorem 3.4 and a sketch of the proof of Theorem
4.19.
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1.3 Notation

Some of our results require facts from the theory of partial differential equations. Here we will use the same type
of notation given in [1] and [36].

Given ᾱ := (α1..., αn) whose components are nonnegative integers, let |ᾱ| :=
∑n
i=1 αi. Ifφ is a smooth function,

we define the derivative of order ᾱ applied to φ as

Dᾱφ :=
∂ᾱφ

∂α1x1 · · ·∂αnxn
.

The special case αi = 1 and αj = 0 for all j 6= i reducesDᾱφ to ∂φ
∂xi

, the partial derivative of φwith respect to xi, in
which case we write ∂xiφ. If φ : Rn → R then ∇φ and Hφ represent the gradient vector of φ (i.e., the row vector
(∂xiφ), i = 1, 2, ..., n) and the Hessian matrix of φ, i.e., Hφ =

(
∂2xixjφ

)
, for i, j = 1, ..., n, respectively.

LetΩ be a subset of Rn; κ and p positive integers; and 0 < β < 1.

We will consider the following spaces.

• Bw(Ω) is a normed linear space of real–valued functions onΩwith finite w–norm. See Definition 2.8.

• The space Cκ(Ω) consists of all real–valued continuous functions φ on Ω such that Dᾱφ, 0 ≤ |ᾱ| ≤ κ, is
continuous as well. A particular case can be seen in Definition 2.2.

• Cκ,β(Ω) is the normed subspace of Cκ(Ω) consisting of those functions f for whichDᾱf, 0 ≤ |ᾱ| ≤ κ, satisfies
a Hölder condition with exponent β ∈]0, 1[ on xi ∈ R, for i = 1, 2, ..., n. Particular cases can be seen in
Definitions 3.1 and Appendix B.

• Lp(Ω) is the Banach space consisting of all measurable functions f onΩ for which∫
Ω

|f(x)|pdx <∞.
See Definition 3.2.

• Wκ,p(Ω) is the space of measurable functions φ in Lp(Ω) such that Dᾱφ is in Lp(Ω). Here 0 ≤ |ᾱ| ≤ κ and
Dᾱφ stands for a weak (or distributional) derivative of φ. Definition 3.3 is a particular case of this space.

Definition 1.1. The setΩ is said to be a domain if it is an open and connected subset of Rn.

Definition 1.2. A bounded domain Ω and its boundary ∂Ω are said to be of class Cι,β for ι ≥ 0 and β ∈ [0, 1], if for each
point x0 ∈ ∂Ω, there exists a ball B(x0) and a one–to–one mapping ψx0 from B(x0) to D ⊂ Rn such that

(i) ψx0(B(x0) ∩Ω) ⊂ Rn+,

(ii) ψx0(B(x0) ∩ ∂Ω) ⊂ ∂Rn+

(iii) ψx0 ∈ Cι,β(B(x0)) and (ψx0)
−1 ∈ Cι,β(D).

Definition 1.3. Let X and Y be Banach spaces. We say that X is continuously imbedded in Y, which will be denoted as
X ↪→ Y, if X ⊆ Y and there exists a constant C such that ‖x‖Y ≤ C‖x‖X for every x ∈ X. Moreover, we say that X is
compactly imbedded in Y if X ↪→ Y and, in addition, the unit ball in X is precompact in Y (or equivalently, every bounded
sequence in X has a subsequence that converges in Y).

Definition 1.4. Let X be a topological space. If there exists a complete separable metric space Y and a Borel subset B ⊂ Y
such that X is homeomorphic to B, then X is said to be a Borel space.

For vectors x and matrices A, we use the norms

|x|2 :=
∑
i

x2i and |A|2 := Tr (AA ′) =
∑
i,j

A2ij,

where A ′ and Tr(·) denote the transpose of A = (Aij) and the trace of a square matrix, respectively.
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Chapter 2

The game model

This chapter introduces the SDG we are concerned with, as well as some important concepts.

We consider the n–dimensional process x(·) defined, for all t ≥ 0, by

dx(t) = b (x(t), u1(t), u2(t))dt+ σ (x(t))dW(t) (2.1)

with initial condition x(0) = x, where b : Rn ×U1 ×U2 → Rn and σ : Rn → Rn×m are given functions, and W(·)
is anm–dimensional Wiener process. The sets U1 and U2 are called control (or action) spaces for the players 1 and
2, respectively. For ` = 1, 2, {u`(t) : t ≥ 0} is a U`–valued stochastic process representing the `–player’s action at
each time t ≥ 0.

Assumption 2.1. (a) The function b is continuous on Rn ×U1 ×U2 and there exists a positive constant C1 such that, for
each x and y in Rn,

sup
(u1,u2)∈U1×U2

|b (x, u1, u2) − b (y, u1, u2)| ≤ C1|x− y|

(b) There exists a positive constants C2 such that for each x and y in Rn,

|σ(x) − σ(y)| ≤ C2|x− y|,

(c) There exists a positive constant γ such that the matrix a := σσ ′ satisfies:

x ′a(y)x ≥ γ|x|2 (uniform ellipticity), (2.2)

for each x ∈ Rn.

(d) The control sets U1 and U2 are compact subsets of complete and separable vector normed spaces.

Definition 2.2. Let Cκ(Rn) be the space of all real–valued continuous functions on Rn with continuous l–th partial deriva-
tive in xi ∈ R, for i = 1, ...,N, l = 0, 1, ..., κ. In particular, when κ = 0, C0(Rn) stands for the space of real–valued
continuous functions on Rn.

Recall the notation in Section 1.3. For (u1, u2) in U1 ×U2 and h in C2(Rn), let

Lu1,u2h(x) := 〈∇h(x), b (x, u1, u2)〉+
1

2
Tr [[Hh(x)] a(x)]

=

n∑
i=1

bi (x, u1, u2)∂xih(x) +
1

2

n∑
i,j=1

aij(x)∂
2
xixj

h(x), (2.3)

with a(·) as in Assumption 2.1(c).
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2.1 Strategies

For each ` = 1, 2, we denote by V` the space of probability measures on U` endowed with the topology of weak
convergence. With this topology, and in view of Assumption 2.1(d), it is well known that V` is a compact metric
set (see [10, Chapter 7.4], or [11, Chapter 1] for reference).

We borrow the following from Definition C.1 in [45].

Definition 2.3. Let X and Y be two Borel spaces (recall Definition 1.4). A stochastic kernel on X given Y is a function P(·|·)
such that:

(a) P(·|y) is a probability measure on X for each fixed y ∈ Y, and

(b) P(B|·) is a measurable function on Y for each fixed Borel subset B ⊂ X.

The set of all stochastic kernels on X given Y is denoted as P(X|Y).

Next, we define the set of policies we are going to deal with.

Definition 2.4. For ` = 1, 2, a family of functions π` ≡
{
π`t : t ≥ 0

}
is said to be a randomized Markov strategy for player

` if, for every t ≥ 0, π`t is a stochastic kernel in P(U`|Rn). We denote the family of all randomized Markov strategies for
player ` = 1, 2 as Π`m. Moreover, we say that π` ∈ Π`m, ` = 1, 2, is a stationary strategy if there exists a stochastic kernel
ϕ`(·|·) ∈ P(U`|Rn) such that π`t(A|x) = ϕ`(A|x) for all t ≥ 0, A ⊆ U` and x ∈ Rn. As an abuse of terminology, we shall
write π`(·|·) = π`t(·|·) for all t ≥ 0 and ` = 1, 2.

The family of all stationary strategies for player ` = 1, 2 will be denoted as Π`. Note that Π` ⊆ Π`m.

In a general context, discounted and average equilibria can be defined in terms of randomized Markov strate-
gies. However, we will focus on the space of stationary strategies because our hypotheses ensure the existence of
saddle points for the discounted and the ergodic criteria in this set (see Theorems 4.10 and 5.5). Besides, this class
of policies is typically used for defining concepts such as positive recurrence, ergodicity,w–exponential ergodicity
(referred to in Assumption 2.9) and bias of a pair of strategies (see (6.6) and [23, 52, 80]). In fact, as far as we can
tell, the latter objects are not even defined for nonstationary strategies.

When using randomized stationary strategies
(
π1, π2

)
in Π1 × Π2, we will write, for x ∈ Rn,

b
(
x, π1, π2

)
:=

∫
U2

∫
U1
b (x, u1, u2)π

1(du1|x)π
2(du2|x). (2.4)

For (ϕ,ψ) ∈ V1 × V2, we also introduce the notation

b (x,ϕ,ψ) :=

∫
U2

∫
U1
b (x, u1, u2)ϕ(du1)ψ(du2). (2.5)

Moreover, recalling (2.3), for h ∈ C2(Rn), let

Lπ
1,π2h(x) :=

∫
U2

∫
U1

Lu1,u2h(x)π1(du1|x)π2(du2|x). (2.6)

We also use
Lϕ,ψh(x) :=

∫
U2

∫
U1

Lu1,u2h(x)ϕ(du1)ψ(du2),

for (ϕ,ψ) ∈ V1 × V2.

Remark 2.5. A direct calculation yields that b(·, ϕ,ψ) defined in (2.5), has the corresponding Lipschitz property in As-
sumption 2.1(a), that is, there exists a constant C1 such that

sup
(ϕ,ψ)∈V1×V2

|b (x,ϕ,ψ) − b (y,ϕ,ψ)| ≤ C1|x− y|
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for all x, y ∈ Rn. Moreover, the Lipschitz conditions on b and σ in Assumption 2.1(a)–(b), along with the compactness of V1

and V2 yield that there exists a constant C̃ ≥ C1 + C2 such that

sup
(ϕ,ψ)∈V1×V2

|b (x,ϕ,ψ)|+ |σ(x)| ≤ C̃(1+ |x|)

for all x ∈ Rn.

Assumption 2.1 and Remark 2.5 ensure that, for each pair
(
π1, π2

)
inΠ1×Π2, the system (2.1) admits an almost

surely strong solution x(·) := {x(t) : t ≥ 0}, which is a Markov–Feller process whose generator coincides with the
operator Lπ1,π2h in (2.6). For more details, see [35, Theorem 2.1], [30, Theorem 3.1] and [85, Chapter III.2]. To
emphasize the dependence on

(
π1, π2

)
∈ Π1 × Π2, sometimes we write x(·) as xπ

1,π2(·). Also, the corresponding
transition probability is

Pπ
1,π2

x (t, B) := P
(
xπ
1,π2(t) ∈ B|xπ

1,π2(0) = x
)

for every Borel set B ⊂ Rn and t ≥ 0. The associated conditional expectation is written as Eπ1,π2x (·).

2.2 Ergodicity assumptions

The following hypothesis is a standard Lyapunov stability condition for continuous time (controlled and uncon-
trolled) Markov processes.

Assumption 2.6. There exists a function w ≥ 1 in C2(Rn) and constants d ≥ c > 0 such that

(a) lim|x|→∞w(x) =∞.

(b) Lπ1,π2w(x) ≤ −cw(x) + d for all
(
π1, π2

)
in Π1 × Π2 and x in Rn.

Assumption 2.6 gives that, for each
(
π1, π2

)
∈ Π1 × Π2, the Markov process xπ

1,π2(t), t ≥ 0, is Harris positive
recurrent with a unique invariant probability measure µπ1,π2(·) for which

µπ1,π2(w) :=

∫
Rn
w(x)µπ1,π2(dx) (2.7)

is finite. (See [3, 4, 37, 42, 69].)

By Theorem 4.3 of [3], for each pair
(
π1, π2

)
in Π1 × Π2 the probability measures Pπ1,π2x (t, ·) and µπ1,π2 are

both equivalent to Lebesgue’s measure λ on Rn for every t ≥ 0 and x ∈ Rn. Hence there exists a transition density
function pπ

1,π2(x, t, y) such that

Pπ
1,π2

x (t, B) =

∫
B

pπ
1,π2(x, t, y)dy (2.8)

for every Borel set B ⊂ Rn.

Theorem A.1 (Dynkin’s formula) and, again, Assumption 2.6 ensure the boundedness of Eπ1,π2x [w (x(t))] in the
sense of the following result. The proof is straightforward (see, for instance, [52, Lemma 2.10] or [69, Theorem 2.1
(iii)]).

Lemma 2.7. The condition (b) in Assumption 2.6 implies that

Eπ
1,π2

x [w (x(t))] ≤ e−ctw(x) + d

c

(
1− e−ct

)
(2.9)

for every
(
π1, π2

)
in Π1 × Π2, t ≥ 0, and x ∈ Rn.

We now introduce the concept of the w–weighted norm, where w is the function in Assumption 2.6.
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Definition 2.8. Let Bw(Rn) denote the Banach space of real–valued measurable functions v on Rn with finite w–norm,
which is defined as

‖v‖w := sup
x∈Rn

|v(x)|

w(x)
.

Moreover, Mw (Rn) stands for the normed linear space of finite signed measures µ on Rn such that

‖µ‖w :=

∫
Rn
w(x)d |µ| <∞,

where |µ| := µ+ + µ− denotes the total variation of µ.

By (2.7), µπ1,π2 belongs to Mw (Rn) for every
(
π1, π2

)
∈ Π1 × Π2. In addition, for each ν ∈ Bw(Rn), letting

µπ1,π2(ν) :=
∫
νdµπ1,π2 , we get

|µπ1,π2(ν)| ≤ ‖ν‖w
∫
Rn
wd |µπ1,π2 | = ‖ν‖w ‖µπ1,π2‖w <∞. (2.10)

Let T be a positive constant. For
(
π1, π2

)
fixed, define the T–skeleton chain of xπ

1,π2(·) by:

xπ
1,π2

T :=
{
xπ
1,π2(kT) : k = 0, 1, ...

}
. (2.11)

Let Qπ
1,π2

m (x, ·) be them–step transition probability of xπ
1,π2

T , defined as

Qπ
1,π2

m (x, B) := Pπ
1,π2

x (mT,B), B ⊆ Rn,

with Pπ1,π2x as in (2.8).

Let us impose now the following condition on xπ
1,π2

T .

Assumption 2.9. The skeleton chain (2.11) is uniformly w–exponentially ergodic. That is, there exist positive constants
ρ1 < 1 and ρ2 such that, for allm ≥ 1,

sup
(π1,π2)∈Π1×Π2

∥∥∥Qπ1,π2m (x, ·) − µπ1,π2(·)
∥∥∥
w
≤ ρ2ρm1 w(x). (2.12)

Sufficient conditions for this Assumption are given, for instance, in Assumption 4.1 and Lemma 4.8 of [68].

The proof of the following result is based on those given in [51] and [52, Theorem 2.7].

Theorem 2.10. Suppose that Assumptions 2.1, 2.6 and 2.9 hold. Then the process xπ
1,π2(·) is uniformly w–exponentially

ergodic, that is, there exist constants C, δ > 0 such that

sup
(π1,π2)∈Π1×Π2

∣∣∣Eπ1,π2x ν (x(t)) − µπ1,π2(ν)
∣∣∣ ≤ Ce−δt‖ν‖ww(x) (2.13)

for all x ∈ Rn, t ≥ 0, and ν ∈ Bw(Rn). In (2.13), µπ1,π2(ν) is defined as in (2.7), with ν in lieu of w.

Proof. Fix T > 0 and note that any t > 0 can be expressed in terms of T as t = mT + s for some m = 0, 1, ..., and
s ∈ [0, T [. Hence, for every x ∈ Rn, ν ∈ Bw(Rn) and t ≥ 0we have∣∣∣Eπ1,π2x ν (x(t)) − µπ1,π2(ν)

∣∣∣ = ∣∣∣∣∫
Rn
ν(y)

[
Pπ

1,π2

x (t, dy) − µπ1,π2(dy)
]∣∣∣∣

≤ ‖ν‖w
∫
Rn
w(y)

∣∣∣Pπ1,π2x (t, dy) − µπ1,π2(dy)
∣∣∣

= ‖ν‖w
∫
Rn
w(y)

∣∣∣∣∫
Rn

Pπ
1,π2

z (mT, dy)Pπ
1,π2

x (s, dz) − µπ1,π2(dy)

∣∣∣∣ , (2.14)
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by the Chapman–Kolmogorov equation. By Fubini’s Theorem, (2.14) becomes∣∣∣Eπ1,π2x ν (x(t)) − µπ1,π2(ν)
∣∣∣ ≤ ‖ν‖w ∫

Rn
Pπ

1,π2

x (s, dz)
∥∥∥Pπ1,π2z (mT, ·) − µπ1,π2(·)

∥∥∥
w

= ‖ν‖w
∫
Rn

Pπ
1,π2

x (s, dz)
∥∥∥Qπ1,π2m (z, ·) − µπ1,π2(·)

∥∥∥
w

≤ ‖ν‖wρ2ρm1 Eπ
1,π2

x w(x(s)) by (2.12)

≤ ‖ν‖wρ2ρm1
[
e−csw(x) +

d

c

(
1− e−cs

)]
by (2.9)

≤ ‖ν‖wρ2ρ−11
(
ρ
1/T
1

)t(
1+

d

c

)
w(x).

Define C := ρ2ρ
−1
1 (1+ d/c) and δ = −(log ρ1)/T , so that the result follows.

The following result is true by virtue of Theorem A.1 and (2.13).

Lemma 2.11. Assume that (2.13) holds. Let
(
π1, π2

)
∈ Π1 × Π2, ν ∈ Bw(Rn), and x ∈ Rn. Then

lim
T→∞

1

T
Eπ

1,π2

x ν (x(T)) = 0. (2.15)

Suppose in addition that ν ∈ C2(Rn) ∩ Bw(Rn) is a harmonic function, in the sense that

Lπ
1,π2ν(x) = 0 for all x ∈ Rn. (2.16)

Then ν(·) is a constant; in fact,
ν(x) = µπ1,π2(ν) for all x ∈ Rn. (2.17)

Proof. The limit (2.15) is straightforward from (2.13). Now, if ν ∈ C2(Rn) ∩ Bw(Rn) is a harmonic function, then
for every

(
π1, π2

)
∈ Π1 × Π2, x ∈ Rn and t ≥ 0, Theorem A.1 yields

Eπ
1,π2

x ν (x(t)) = ν(x) + Eπ
1,π2

x

∫T
0

Lπ
1,π2ν (x(s))ds = ν(x), (2.18)

where the last equality follows from (2.16). Letting T →∞ in (2.18) and using (2.13), we complete the proof.

Following the arguments of Lemma 2.7, it is easy to verify that the combination of Lemma 2.11, Assumption
2.6 and Theorem A.1 yields

µπ1,π2(w) ≤
d

c
(2.19)

for every
(
π1, π2

)
in Π1 × Π2.

2.3 The payoff rate

Let R be a positive real number and B̄R be the closure of

BR := {x ∈ Rn : |x| < R} . (2.20)

Let us now introduce the payoff or reward/cost rate function r from Rn × U1 × U2 to R. Let us impose some
conditions on r. Recall that U1 and U2 are compact subsets of given vector normed spaces.

Assumption 2.12. The function r is

(a) continuous on Rn × U1 × U2 and locally Lipschitz in x uniformly in (u1, u2) ∈ U1 × U2; that is, for each R > 0,
there exists a constant C(R) such that

sup
(u1,u2)∈U1×U2

|r (x, u1, u2) − r (y, u1, u2)| ≤ C(R)|x− y|

for all x, y ∈ B̄R;
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(b) in Bw(Rn) uniformly in (u1, u2) ∈ U1 ×U2, i.e., there exists a constantM such that

sup
(u1,u2)∈U1×U2

|r (x, u1, u2)| ≤Mw(x)

for all x ∈ Rn;

(c) concave in U1, and convex in U2.

Analogously to (2.4) and (2.5), when using randomized Markov policies
(
π1, π2

)
in Π1 ×Π2, we will write, for

every x ∈ Rn,

r
(
x, π1, π2

)
:=

∫
U2

∫
U1
r (x, u1, u2)π

1(du1|x)π
2(du2|x).

Similarly, for (ϕ,ψ) ∈ V1 × V2, we define

r (x,ϕ,ψ) :=

∫
U2

∫
U1
r (x, u1, u2)ϕ(du1)ψ(du2). (2.21)

Remark 2.13. We can verify that, for (ϕ,ψ) ∈ V1 × V2, the reward rate r satisfies Assumption 2.12(a), that is, for each
R > 0, there exists a constant C(R) such that

sup
(ϕ,ψ)∈V1×V2

|r (x,ϕ,ψ) − r (y,ϕ,ψ)| ≤ C(R)|x− y|

for all x, y ∈ B̄R.

The following result provides important facts.

Lemma 2.14. Under Assumptions 2.1 and 2.12(a), the function r(·, ϕ,ψ) is continuous in (ϕ,ψ) ∈ V1 × V2. Moreover,
for a fixed h in C2(Rn) ∩ Bw(Rn), Lϕ,ψh is continuous in (ϕ,ψ) ∈ V1 × V2.

Proof. Under the given Assumptions, the functions b and r are continuous in (u1, u
2) ∈ U1 ×U2, and attain their

respective suprema on U1, and infima on U2. Hence, the definition of weak convergence yields the result.

Remark 2.15. [89, Theorem 4.2]. The compactness of U` (resp. V`), ` = 1, 2, the linearity of h 7→ Lϕ,ψh, Assumption
2.12(c), and Lemma 2.14 yield Isaacs’ condition:

sup
ϕ∈V1

inf
ψ∈V2

{
r (x,ϕ,ψ) + Lϕ,ψh(x)

}
= inf
ψ∈V2

sup
ϕ∈V1

{
r (x,ϕ,ψ) + Lϕ,ψh(x)

}
.

For ease of notation we will combine expressions such as (2.4) and (2.5), that is, for (ϕ,ψ) ∈ V1 × V2 and(
π1, π2

)
∈ Π1 × Π2,

r
(
x,ϕ, π2

)
:= r

(
x,ϕ, π2(·|x)

)
and r

(
x, π1, ψ

)
:= r

(
x, π1(·|x), ψ

)
.

Similarly, for h ∈ C2(Rn),

Lϕ,π
2

h(x) := Lϕ,π
2(·|x)h(x) and Lπ

1,ψh(x) := Lπ
1(·|x),ψh(x).
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Chapter 3

Interchange of limits

This chapter addresses sufficient conditions to ensure that a sequence of solutions to certain Dirichlet problems
converges, in some sense, to the solution of the limiting Dirichlet problem. Such convergence will be crucial to
ensure the existence of the game’s value (see Definition 4.4) and of saddle points. For an extensive treatment of
Dirichlet problems, we refer to [36] and [64]. To begin our analysis, we introduce first some important definitions.

Definition 3.1. The set C2,β(Rn) is the normed subspace of C2(Rn) consisting of those functions f for which f,∇f, and Hf
satisfy a Hölder condition with exponent β ∈]0, 1[ on xi ∈ R, for i = 1, 2, ..., n. The norm ‖ · ‖C2,β(Rn) is defined by

‖f‖C2,β(Rn) := max {sup |f(x)|, sup |∇f(x)| , sup |Hf(x)|}

+max
{

sup
|f(x) − f(y)|

|x− y|β
, sup

|∇f(x) −∇f(y)|
|x− y|β

, sup
|Hf(x) −Hf(y)|

|x− y|β

}
for each f in C2,β(Rn). The suprema are taken over all x, y ∈ Rn, with x 6= y.

Let Ω be a bounded domain in Rn, i.e., an open and connected subset of Rn and denote the closure of this set
by Ω̄.

Definition 3.2. Fix p ≥ 1. The normed space Lp(Ω) consists of all measurable functions f onΩ for which ‖f‖Lp(Ω) <∞,
where

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|pdx

)1/p
.

Definition 3.3. The setW2,p(Ω) is the space of measurable functions f in Lp(Ω) such that f, and its first and second weak
derivatives, ∂xif, ∂2xixjf, are in Lp(Ω) for all i, j = 1, ..., n. The corresponding norm is

‖f‖W2,p(Ω) :=

∫
Ω

|f(x)|p + n∑
i=1

|∂xif(x)|
p
+

n∑
i,j=1

∣∣∣∂2xixjf(x)∣∣∣p
dx

1/p .
For every x ∈ Rn, (ϕ,ψ) in V1 × V2, α > 0, and h in C2(Rn) let

b̂(x,ϕ,ψ, h, α) := 〈∇h(x), b (x,ϕ,ψ)〉− αh(x) + r (x,ϕ,ψ) , (3.1)

with b as in Assumption 2.1(a) and r as in Assumption 2.12. We also define

L̂αh(x) := sup
ϕ∈V1

inf
ψ∈V2

b̂(x,ϕ,ψ, h, α) +
1

2
Tr [[Hh(x)]a(x)] , (3.2)

with a as in Assumption 2.1, and b̂ and h as in (3.1). By the Remark 2.15, we are indifferent between defining
L̂αh(x) as in (3.2), and defining it as

L̂αh(x) := inf
ψ∈V2

sup
ϕ∈V1

b̂(x,ϕ,ψ, h, α) +
1

2
Tr [[Hh(x)]a(x)] .
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The following result is one of the main resources along the development of our work. It gives conditions
ensuring that

lim
m→∞ L̂αmhm = L̂αh (3.3)

in some sense.

Theorem 3.4. Let Ω be a C2 domain and suppose that Assumptions 2.1 and 2.12 hold. In addition, assume that there exist
sequences {hm} ⊂ W2,p(Ω) and {ξm} ⊂ Lp(Ω), with p > 1, and a sequence {αm} of positive numbers satisfying that:

(a) L̂αmhm = ξm inΩ form = 1, 2, ...

(b) There exists a constantM1 such that ‖hm‖W2,p(Ω) ≤M1 form = 1, 2, ...

(c) ξm converges in Lp(Ω) to some function ξ.

(d) αm converges to some α.

Then:

(i) There exist a function h ∈ W2,p(Ω) and a subsequence {mk} ⊂ {1, 2, ...} such that hmk → h in the norm ofW1,p(Ω)
as k→∞. Moreover,

L̂αh = ξ in Ω. (3.4)

(ii) If p > n, then hmk → h in the norm of C1,η(Ω̄) for η < 1 − n
p

. If, in addition, ξ is in C0,β(Ω), with β ≤ η, then h
belongs to C2,β(Ω).

The proof is given in Appendix B.

This result can be found in similar versions in [3, Lemma 3.5], [4, Lemma 3.4.18], and [51, Proposition A.3] for
optimal control problems. We extend it here to zero–sum stochastic differential games. A major difference with [3,
Lemma 3.5] and [4, Lemma 3.4.18] is that our result enables a stronger type of convergence than that inW2,p(Rn).
Proposition A.3 of [51] introduced the convergence of the sequence {αm : m = 1, 2, ...} to a nonnegative constant
α.

An important particular case of Theorem 3.4 is that where the sets V1 and V2 have but one element; ϕ and ψ,
respectively. In Corollary 3.5 below, (3.2) reduces to

L̂ϕ,ψα h(x) := b̂ (x,ϕ,ψ, h, α) +
1

2
Tr [[Hh(x)]a(x)] , (3.5)

respectively.

Corollary 3.5. Let the Assumptions of Theorem 3.4 hold. In addition, assume that (ϕ,ψ) is the only element in V1 × V2
and that there exist sequences {hm} ⊂ W2,p(Ω) and {ξm} ⊂ Lp(Ω), with p > 1, and a sequence {αm} of positive numbers
satisfying conditions (a)–(d) of Theorem 3.4. Then the conclusions of Theorem 3.4 hold with L̂ϕ,ψα h as in (3.5).
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Chapter 4

Zero–sum stochastic differential games
with discounted payoffs

This chapter deals with stationary two–person zero–sum stochastic differential games with discounted payoffs.
We depart from an Itô’s diffusion, a payoff rate, and the dynamic programming equation associated to these. Af-
terwards we will borrow some techniques from the theory of elliptic partial differential equations (PDEs) to prove
the existence of a solution to such PDE (see [36]). Then we will see that this solution coincides with the value of
the game (see Definition 4.4).

Earlier references for SDGs with discounted payoff are Bensoussan and Frehse [9], Fujita and Morimoto [29],
Swiech [92], and Kushner [62], for instance.

We borrow Song’s and Mao’s concepts (see [90, 91] and [67] respectively) on switching diffusions to propose
what we call SDG with random discounted payoff. The modification we use is in the spirit of González–Hernández
et al. works on controlled Markov processes [32, 33]. That is, we intend to study a discounted payoff criterion where
the discount factor is stochastic, rather than being fixed.

4.1 The infinite–horizon discounted payoff criterion

The goal of this section is to prove the existence of saddle points as given in (4.2). To do that, we will present some
connections between the discounted payoff (4.1) and the Bellman equations (4.8)–(4.10) below. The assumptions
we will make are those in Chapter 2, except for Assumption 2.9.

The game we will deal with is played as follows. At each time t > 0, both players observe the state of the
system x(t), and they independently choose control actions u1(t) in U1 and u2(t) in U2. For every initial state
x ∈ Rn, the goal of player 1 (resp. player 2) is to maximize (resp. minimize) his/her reward (resp. cost) over an
infinite–horizon with respect to the optimality criterion defined in (4.1).

Fix a discount factor α > 0. For each pair of strategies
(
π1, π2

)
in Π1 × Π2 and x ∈ Rn, we define the infinite–

horizon discounted payoff Vα as

Vα
(
x, π1, π2

)
:= Eπ

1,π2

x

[∫∞
0

e−αtr
(
x(t), π1, π2

)
dt

]
. (4.1)

By Lemma 2.7, Assumption 2.12(b) and Fubini’s theorem, we see that the expectation and the integral in (4.1) are
interchangeable.

Definition 4.1. A pair
(
π1∗, π

2
∗
)
∈ Π1 ×Π2 is said to be a saddle point (also known as a Nash equilibrium or a noncoop-

erative equilibrium) if
Vα
(
x, π1, π2∗

)
≤ Vα

(
x, π1∗, π

2
∗
)
≤ Vα

(
x, π1∗, π

2
)

(4.2)
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for all x ∈ Rn and
(
π1, π2

)
∈ Π1 × Π2.

Remark 4.2. An economic intepretation of this definition is that when both players are in equilibrium, if one of them wishes
to change his strategy, he would not earn more, on the contrary, he might actually loose value with respect to what he would
earn if he sticked to the strategies of the saddle point.

The following result establishes that the infinite–horizon discounted payoff Vα(·, ·, ·) is dominated by the Lya-
punov function w in Assumption 2.6, in a certain sense.

Proposition 4.3. Assumptions 2.6 and 2.12(b) imply that the infinite–horizon discounted payoff Vα
(
·, π1, π2

)
belongs to

the space Bw (Rn) for each
(
π1, π2

)
in Π1 × Π2. Actually, for each x ∈ Rn we have

sup
(π1,π2)∈Π1×Π2

∣∣Vα (x, π1, π2)∣∣ ≤M(α)w(x) withM(α) =M
α+ d

αc
. (4.3)

Here, c and d are as in Assumption 2.6 andM is the constant in Assumption 2.12.

The proof of Proposition 4.3 is based on Lemma 2.7. We omit it because it follows the same arguments of [51,
Proposition 2.2.3], or [53, Proposition 3.6].

4.1.1 Value of the game

The functions L and U on Rn defined by

L(x) := sup
π1∈Π1

inf
π2∈Π2

Vα
(
x, π1, π2

)
and (4.4)

U(x) := inf
π2∈Π2

sup
π1∈Π1

Vα
(
x, π1, π2

)
(4.5)

are called the lower value and the upper value, respectively, of the discounted payoff game. It is clear that

L(x) ≤ U(x) for all x ∈ Rn. (4.6)

When the equality holds, we obtain the following.

Definition 4.4. If L(x) = U(x) for all x ∈ Rn, then the common function is called the value of the infinite–horizon game
and it is denoted by V .

Observe that if
(
π1∗, π

2
∗
)
∈ Π1 × Π2 satisfies the saddle point condition (4.2), a trivial calculation yields

U(x) ≤ Vα
(
x, π1∗, π

2
∗
)
≤ L(x) for all x ∈ Rn.

This fact, along with (4.6) gives that, if a saddle point
(
π1∗, π

2
∗
)

exists, then the infinite–horizon game has the value

V(x) = Vα
(
x, π1∗, π

2
∗
)

for all x ∈ Rn. (4.7)

The converse is not necessarily true.

Observe that, by (4.3), the lower and the upper values of the game, and therefore the value of the game, are in
Bw(Rn).

Let us introduce now the α–discount Bellman equations.

Definition 4.5. We say that a function v and a pair of strategies
(
π1, π2

)
∈ Π1 × Π2 verify the α–discount Bellman

equations if

αv(x) = r
(
x, π1, π2

)
+ Lπ

1,π2v(x) (4.8)

= sup
ϕ∈V1

{
r
(
x,ϕ, π2

)
+ Lϕ,π

2

v(x)
}

(4.9)

= inf
ψ∈V2

{
r
(
x, π1, ψ

)
+ Lπ

1,ψv(x)
}

(4.10)

for all x ∈ Rn.
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The following result establishes a well–known relation between the infinite–horizon α–discounted payoff Vα
and the solution of equation (4.11) below. It can be obtained by seeing Vα

(
·, π1, π2

)
in (4.1) as the resolvent of a

Markov semigroup (see, for instance, [25, p. 11] or [47, Lemma 2.2]), or by invoking Theorem A.1 for e−αTv(x(T))
and then letting T tend to∞.

Proposition 4.6. Fix α > 0 and
(
π1, π2

)
in Π1 × Π2. If a function v ∈ C2(Rn) ∩ Bw(Rn) satisfies

αv(x) = r
(
x, π1, π2

)
+ Lπ

1,π2v(x) (4.11)

for all x ∈ Rn, then
v(x) = Vα

(
x, π1, π2

)
. (4.12)

Moreover, if the equality in (4.11) is replaced with “≤” or “≥”, then (4.12) holds with the corresponding inequality.

4.1.2 Existence of the value function

For
(
π1, π2

)
in Π1 × Π2 and R > 0, define the exit time

τπ
1,π2

R := inf
{
t ≥ 0 : xπ

1,π2(t) 6∈ BR
}
, (4.13)

with BR as in (2.20). Since BR is a bounded set, Eπ1,π2x

[
τπ
1,π2

R

]
is finite. See [77, p. 119].

Define now

hπ
1,π2

α,R (x) := Eπ
1,π2

x

∫τπ1,π2R

0

e−αtr
(
x(t), π1, π2

)
dt

 (4.14)

for x ∈ BR. As in Proposition 4.3, ∣∣∣hπ1,π2α,R (x)
∣∣∣ ≤ M

∫∞
0

e−αtEπ
1,π2

x w (x(t))dt

≤ M(α)w(x), (4.15)

withM(α) as in (4.3). This implies, in particular, that hπ
1,π2

α,R belongs to Bw(Rn).

Our next result establishes the existence of a solution to equation (4.11). Its proof is inspired in the results of
Section 3.5 in [4] (see also [9, Chapter 3], [51] and [92]). We include it here for the sake of completeness.

Proposition 4.7. Fix α > 0, p > n, and
(
π1, π2

)
in Π1 × Π2. Then there exists a function v in C2(Rn) ∩ Bw(Rn) that

satisfies (4.11) for all x ∈ Rn.

Proof. We use Corollary 3.5 to prove that (4.11) admits a solution v, which is a member of C2(Rn).

Fix R > 0 and consider the following linear Dirichlet problem:

αvR(x) = r
(
x, π1, π2

)
+ Lπ

1,π2vR(x) for all x ∈ BR, (4.16)
vR(x) = 0 for all x ∈ ∂BR, (4.17)

with BR as in (2.20). Observe that vR depends on the selection of
(
π1, π2

)
∈ Π1 × Π2. However, we will use the

symbol vR for ease of notation.

Theorem 9.15 of [36] ensures that (4.16)–(4.17) has a unique solution vR inW2,p(BR).

A direct calculation yields that this solution is in fact vR ≡ hπ
1,π2

α,R , with hπ
1,π2

α,R as in (4.14).
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Now, fix p > n, where n is the dimension of the system (2.1). Let Rm ↑ ∞ be an increasing sequence of positive
numbers such that R1 > 2R. Then, for eachm = 1, 2, ...we invoke Theorem A.3 to assert the existence of a constant
C0 (independent of the sequence {Rm}) such that

‖vRm‖W2,p(BR) ≤ C0

(
‖vRm‖Lp(B2R) +

∥∥r (·, π1, π2)∥∥Lp(B2R)) (4.18)

≤ C0

(
M(α) ‖w‖Lp(B2R) +M ‖w‖Lp(B2R)

)
(4.19)

≤ C0(M(α) +M)|B̄2R|
1/p max

x∈B̄R
w(x), (4.20)

where M(α) and M are the constants in (4.3) and in Assumption 2.12, respectively. In (4.20), |B̄2R| denotes the
volume of the closed ball with radius 2R. Thus, applying Corollary 3.5, we ensure the existence of a function
v ∈ C2,β(BR), with β ∈]0, 1[, such that vR → v uniformly on BR, and also

αv(x) = r
(
x, π1, π2

)
+ Lπ

1,π2v(x) for all x ∈ BR.

Since R > 0 was arbitrary, we can extend the previous convergence vRm → v to all of Rn. Finally, using the fact
that vRm ≡ hπ

1,π2

α,Rm
and combining it with inequality (4.15) we get that vRm is in Bw(Rn). Hence, by the uniform

convergence of vRm → v and by Lemma A.4, we conclude that v is in C2(Rn) ∩ Bw(Rn). This completes the
proof.

Remark 4.8. From Proposition 4.7, it should be noted that the function v ∈ C2(Rn) ∩ Bw(Rn) depends implicitly on the
choice of

(
π1, π2

)
in Π1 × Π2.

4.1.3 Existence of a saddle point

In this subsection we establish a result on the existence of a solution to the α–discount Bellman equations (4.8)–
(4.10).

Theorem 4.9. Recall that n is the dimension of the diffusion (2.1). Let p > n. Fix an arbitrary α ∈]0, 1[. If Assumptions
2.1, 2.6 and 2.12 hold, then there exist a function v in C2(Rn) ∩ Bw(Rn) and a pair of strategies

(
π1, π2

)
in Π1 × Π2 that

verify the α–discount Bellman equations (4.8)–(4.10).

Proof. Fix α > 0, p > n, R > 0, and consider the Dirichlet problem

αvR(x) = sup
ϕ∈V1

inf
ψ∈V2

{
r (x,ϕ,ψ) + Lϕ,ψvR(x)

}
(4.21)

= inf
ψ∈V2

sup
ϕ∈V1

{
r (x,ϕ,ψ) + Lϕ,ψvR(x)

}
(4.22)

for all x ∈ BR, and the boundary condition

vR(x) = 0 for all x ∈ ∂BR, (4.23)

with BR as in (2.20).

By Theorem 15.2 of [36] (or Theorem 3.4.17 of [4] in the context of controlled diffusions), the problem (4.21)–
(4.23) has a solution vR ∈ C2,β(BR), with 0 < β < 1.

By Theorem A.2, we can assert the existence of a pair
(
π1∗, π

2
∗
)
∈ Π1 × Π2 such that (4.16) holds. With this in

mind, it is easy to verify that vR ≡ hπ
1,π2

α,R with hπ
1,π2

α,R as in (4.14). Thus, by (4.15), we see that vR is in Bw(BR).

Now let Rm ↑ ∞ be an increasing sequence with R1 > 2R, and let
(
π1m, π

2
m

)
be such that (4.16) holds. By

Theorem A.3 there exists a constant C0 (independent of Rm) such that

‖vRm‖W2,p(BR) ≤ C0

(
‖vRm‖Lp(B2R) +

∥∥r (·, π1m, π2m)∥∥Lp(B2R))
12



≤ C0(M(α) +M)|B̄2R|
1/p max

x∈B̄R
w(x) <∞.

Thus, Theorem 3.4 yields the existence of a function v ∈ C2,β(BR), with β ∈]0, 1[, such that vRm → v and

αv(x) = sup
ϕ∈V1

inf
ψ∈V2

{
r(x,ϕ,ψ) + Lϕ,ψv(x)

}
= inf

ψ∈V2
sup
ϕ∈V1

{
r(x,ϕ,ψ) + Lϕ,ψv(x)

}
with x ∈ BR. Now, since R > 0was arbitrary, we can extend the convergence vRm → v to all of Rn.

Finally, since vR is in Bw(Rn), and due to the uniform convergence of vR to v, we can use Lemma A.4 to
conclude that v is a member of C2(Rn) ∩ Bw(Rn).

The following result establishes the equivalence between a saddle point of the α–discount game and the strate-
gies that verify equations (4.8)–(4.10).

Theorem 4.10. Assume the hypotheses of Theorem 4.9. Then the function v in C2(Rn) ∩ Bw(Rn) and the pair
(
π1∗, π

2
∗
)

of
strategies in Π1 × Π2 that satisfy the α–discount Bellman equations (4.8)–(4.10) are such that:

(a) The function v(x) equals the value function V(x) in Definition 4.4 for all x ∈ Rn, and

(b) The pair
(
π1∗, π

2
∗
)

is a saddle point, and therefore, from (4.7), Vα
(
x, π1∗, π

2
∗
)
= V(x) for all x ∈ Rn.

Proof. (a) Since the existence of the pair
(
π1∗, π

2
∗
)
∈ Π1 × Π2 is ensured by Theorem A.2, a comparison of (4.8)

with (4.11) yields that part (a) follows from Proposition 4.6.

(b) Let V∗
(
x, π1, π2

)
be defined by

V∗
(
x, π1, π2

)
:= r

(
x, π1, π2

)
+ Lπ

1,π2v(x). (4.24)

Interpreting this function as the payoff of a certain game, it follows from (4.8)–(4.10) and [50, Proposition
4.3] that the pair

(
π1∗, π

2
∗
)

is a saddle point, that is, V∗
(
x, π1∗, π

2
∗
)
= αv(x) satisfies (4.2). More explicitly, from

(4.24) and the equality V∗
(
x, π1∗, π

2
∗
)
= αv(x), (4.2) becomes:

r
(
x, π1, π2∗

)
+ Lπ

1,π2∗v(x) ≤ αv(x) ≤ r
(
x, π1∗, π

2
)
+ Lπ

1
∗,π

2

v(x)

for all x ∈ Rn, and
(
π1, π2

)
∈ Π1×Π2. These two inequalities, along with the second part of Proposition 4.6,

give (4.2).

4.2 The infinite–horizon random discounted payoff criterion

In this section we consider a class of SDGs with two special features: (i) the system evolves according to a Markov–
modulated diffusion and (ii) the sum of the switching parameters, up to time t ≥ 0, serves as discount rate for studying
an extension of the discounted payoff criterion of Section 4.1.

To do this, we shall replace the constant α > 0 by a time–homogeneous continuous–time irreducible Markov
chain, namely α(·). We assume the state space of α(·) is a finite set E = {α1, α2, ..., αN} of positive real numbers.
Let qij ≥ 0 be the transition rate from state i to state j and observe that the transition probabilities are given by

P(α(s+ t) = αj|α(s) = αi) = qijt+ o(t), (4.25)

for states αi 6= αj, and qii = −
∑
j6=i qij. The matrix Q = [qij] is known as the infinitesimal matrix of the process

α(·).
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Now let the evolution of the game be driven by a diffusion of the form

dx(t) = b(x(t), α(t), u1(t), u2(t))dt+ σ(x(t), α(t))dW(t), (4.26)

with initial conditions x(0) = x, and α(0) = αi. Here, W(·) is an m–dimensional Brownian motion as in (2.1) and
it is assumed to be independent of α(·). The expressions (4.25)–(4.26) are known as a Markov–modulated diffusion
with switching parameter α(·).

It is well known that, even though x(t) itself may not satisfy the Markov property, the joint process (x(t), α(t))
is Markov. See, for instance, [67, p. 104–106].

We will denote the transition probability of the process (x(t), α(t)) by

Pu1,u2x,αi
(t, B× J) := P ((xu1,u2(t), α(t)) ∈ B× J | x(0) = x, α(0) = αi)

for every Borel set B ⊂ Rn and J ⊂ E. The associated conditional expectation is written Eu1,u2x,αi
(·).

The game is played as before in Section 4.1, except that the state of the game is now (x(t), α(t)), rather than
just x(·). For every initial state (x, αi) ∈ Rn × E, the goal of player 1 (resp. player 2) is to choose a strategy π1

(resp. π2) –see Definition 4.12 below– that maximizes (resp. minimizes) his/her random discounted payoff over
an infinite–horizon with respect to the optimality criterion defined by

V
(
x, αi, π

1, π2
)
:= Eπ

1,π2

x,αi

[∫∞
0

exp(−St)r
(
x(t), α(t), π1, π2

)
dt

]
, (4.27)

where, for t ≥ 0,

St :=

∫t
0

α(s)ds, S0 := 0. (4.28)

We will refer to (4.27) as the infinite horizon random discounted payoff. The fact that αj > 0 for j = 1, ...,N, along with
Assumption 4.15, below, ensures that (4.27) is finite.

Let us impose some conditions on the model (4.25)–(4.26). These conditions are much alike Assumption 2.1,
except they use Rn × E in lieu of just Rn.

Assumption 4.11. (a) The function b is continuous on Rn×E×U1×U2 and there exists a positive constant C1 such that,
for each x and y in Rn,

sup
(α,u1,u2)∈E×U1×U2

|b (x, α, u1, u2) − b (y, α, u1, u2)| ≤ C1|x− y|

(b) There exists a positive constant C2 such that for each x and y in Rn,

sup
α∈E

|σ(x, α) − σ(y, α)| ≤ C2|x− y|.

(c) There exists a constant and γ > 0 such that, for each x in Rn, the matrix a(·, ·) := σ(·, ·)σ ′(·, ·) satisfies

inf
α∈E

x ′a(y, α)x ≥ γ|x|2 (uniform ellipticity).

(d) The control sets U1 and U2 are compact subsets of complete and separable vector normed spaces.

Using the notation in Section 1.3, let C2(Rn × E) be the space of real–valued continuous functions h on Rn × E
such that h(x, α) is continuously differentiable in x ∈ Rn for each αi ∈ E. For h ∈ C2(Rn × E), let

Qh(x, αi) :=
N∑
j=1

qijh(x, αj).

Analogously to (2.3), for (u1, u2) ∈ U1 ×U2 and h ∈ C2(Rn × E), let

Lu1,u2h(x, αi) := 〈∇h(x, αi), b (x, αi, u1, u2)〉+
1

2
Tr [[Hh(x, αi)] · a(x, αi)] +Qh(x, α), (4.29)

with a(·, ·) as in Assumption 4.11(c).
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Strategies

As in Section 2.1, for each ` = 1, 2, we denote by V` the space of probability measures on U` endowed with the
topology of weak convergence. We define now the control policies we are going to use for the present variation
of the game model. The following definition matches Definition 2.4 (except for the fact that, here, we put Rn × E
instead of just Rn).

Definition 4.12. For ` = 1, 2, a family of functions π` ≡
{
π`t : t ≥ 0

}
is said to be a randomized Markov strategy for player

` if, for every t ≥ 0, π`t is a stochastic kernel in P(U`|Rn × E). We denote the family of all randomized Markov strategies for
player ` = 1, 2 as Π`m. Moreover, we say that π` ∈ Π`m, ` = 1, 2, is a stationary strategy if there exists a stochastic kernel
ϕ`(·|·, ·) ∈ P(U`|Rn × E) such that π`t(A|x, α) = ϕ`(A|x, α) for all t ≥ 0, A ⊆ U` and (x, α) ∈ Rn × E. In this case we
write π`(·|·, ·) rather than π`t(·|·, ·).

The family of all stationary strategies for player ` = 1, 2 will be denoted as Π`.

When using randomized stationary strategies
(
π1, π2

)
in Π1 × Π2, we will write, for (x, α) ∈ Rn × E,

b
(
x, α, π1, π2

)
:=

∫
U2

∫
U1
b (x, α, u1, u2)π

1(du1|x, α)π
2(du2|x, α).

For (ϕ,ψ) ∈ V1 × V2, we also introduce the notation

b (x, α,ϕ,ψ) :=

∫
U2

∫
U1
b (x, α, u1, u2)ϕ(du1)ψ(du2).

Moreover, for h ∈ C2(Rn × E), let

Lπ
1,π2h(x, α) :=

∫
U2

∫
U1

Lu1,u2h(x, α)π1(du1|x, α)π2(du2|x, α). (4.30)

We also use
Lϕ,ψh(x, α) :=

∫
U2

∫
U1

Lu1,u2h(x, α)ϕ(du1)ψ(du2),

for (ϕ,ψ) ∈ V1 × V2.

Assumption 4.11 ensures that, for each pair
(
π1, π2

)
in Π1 × Π2, the system (4.25)–(4.26) admits an almost

surely unique strong solution x(·) := {x(t) : t ≥ 0}, such that ((x·), α(·)) is a Markov–Feller process whose generator
coincides with the operator Lπ1,π2h in (4.30). For details, see, for instance, [67, pp. 88–90]. Moreover, the operator
Lπ1,π2 coincides with the infinitesimal generator associated to the pair (x(·), α(·)) in (4.25)–(4.26). See [67, p. 48],
for instance.

Some assumptions and definitions

The following hypothesis is a Lyapunov–like condition analogous to Assumption 2.6.

Assumption 4.13. There exists a function w ≥ 1 in C2(Rn × E) and constants d ≥ c > 0 such that

(a) lim|x|→∞w(x, α) =∞ for all α ∈ E.

(b) Lπ1,π2w(x, α) ≤ −cw(x, α) + d for all
(
π1, π2

)
in Π1 × Π2 and (x, α) ∈ Rn × E.

Here, as in Lemma 2.7, the condition (b) in Assumption 4.13 implies that

Eπ
1,π2

x,α [w (x(t), α(t))] ≤ e−ctw(x, α) + d

c

(
1− e−ct

)
(4.31)

for every
(
π1, π2

)
in Π1 × Π2, t ≥ 0, and (x, α) ∈ Rn × E.
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Definition 4.14. Let Bw(Rn × E) denote the Banach space of real–valued measurable functions v on Rn × E with finite
w–norm, which is defined as

‖v‖w := sup
(x,α)∈Rn×E

|v(x, α)|

w(x, α)
.

Let r : Rn×E×U1×U2 → R be a measurable function, which we call the payoff rate. The following conditions
are analogous to those in Assumption 2.12.

Assumption 4.15. The function r is

(a) continuous on Rn×E×U1×U2 and locally Lipschitz in x uniformly in (α, u1, u2) ∈ E×U1×U2; that is, for each
R > 0, there exists a constant C(R) such that

sup
(α,u1,u2)∈E×U1×U2

|r (x, α, u1, u2) − r (y, α, u1, u2)| ≤ C(R)|x− y|

for all |x|, |y| ≤ R;

(b) in Bw(Rn × E) uniformly in (u1, u2) ∈ U1 ×U2, i.e., there exists a constantM such that

sup
(u1,u2)∈U1×U2

|r (x, α, u1, u2)| ≤Mw(x, α)

for all (x, α) ∈ Rn × E;

(c) concave in U1 and convex in U2 for every (x, α) ∈ Rn × E.

When using randomized Markov strategies
(
π1, π2

)
in Π1 × Π2, we will write, for every (x, α) ∈ Rn × E,

r
(
x, α, π1, π2

)
:=

∫
U2

∫
U1
r (x, α, u1, u2)π

1(du1|x, α)π
2(du2|x, α); (4.32)

and, for (ϕ,ψ) ∈ V1 × V2,

r (x, α,ϕ,ψ) :=

∫
U2

∫
U1
r (x, α, u1, u2)ϕ(du1)ψ(du2).

Similarly, for (ϕ,ψ) ∈ V1 × V2 and
(
π1, π2

)
∈ Π1 × Π2,

r
(
x, α,ϕ, π2

)
:= r

(
x, α,ϕ, π2(·|x, α)

)
,

and
r
(
x, α, π1, ψ

)
:= r

(
x, α, π1(·|x, α), ψ

)
.

Finally, for h ∈ C2(Rn × E), we also write

Lϕ,π
2

h(x, α) := Lϕ,π
2(·|x,α)h(x, α)

and
Lπ

1,ψh(x, α) := Lπ
1(·|x,α),ψh(x, α).

The following result is analogous to Lemma 2.14.

Lemma 4.16. Fix h in C2(Rn × E) ∩ Bw(Rn × E). Under Assumptions 4.11 and 4.15(c), the functions r(x, α,ϕ,ψ) and
Lϕ,ψ are continuous in (ϕ,ψ) ∈ V1 × V2 for every (x, α) ∈ Rn × E.

Remark 4.17. Analogously to Remark 2.15, the compactness of U` (` = 1, 2), the linearity of h 7→ Lϕ,ψh, Assumption
4.15(c), and Lemma 4.16 yield Isaacs’ condition:

sup
ϕ∈V1

inf
ψ∈V2

{
r (x, α,ϕ,ψ) + Lϕ,ψh(x, α)

}
= inf

ψ∈V2
sup
ϕ∈V1

{
r (x, α,ϕ,ψ) + Lϕ,ψh(x, α)

}
.
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Recalling (4.27)–(4.28), we will say that a pair
(
π1∗, π

2
∗
)
∈ Π1 × Π2 is a saddle point of the infinite horizon

random discounted game if

V
(
x, α, π1, π2∗

)
≤ V

(
x, α, π1∗, π

2
∗
)
≤ V

(
x, α, π1∗, π

2
)

(4.33)

for all (x, α) ∈ Rn × E and
(
π1, π2

)
∈ Π1 × Π2.

Following the arguments of [51, Proposition 2.2.3] or [53, Proposition 3.6] we can use (4.31) to see thatV
(
·, ·, π1, π2

)
is in Bw(Rn × E) for each

(
π1, π2

)
in Π1 × Π2.

The lower and upper value functions L and U, respectively, in Rn × E are defined similarly to (4.4)–(4.5), with
(x, α) instead of x. If these function are equal, we denote such equality as V(x, α) for all (x, α) in Rn × E.

Definition 4.18. We say that a function v and a pair of strategies
(
π1, π2

)
∈ Π1 × Π2 verify the random discount

Bellman equations if

αiv(x, αi) = r
(
x, αi, π

1, π2
)
+ Lπ

1,π2v(x, αi) (4.34)

= sup
ϕ∈V1

{
r
(
x, αi, ϕ, π

2
)
+ Lϕ,π

2

v(x, αi)
}

(4.35)

= inf
ψ∈V2

{
r
(
x, αi, π

1, ψ
)
+ Lπ

1,ψv(x, αi)
}

(4.36)

for all (x, αi) ∈ Rn × E and t ≥ 0.

Interchange of limits

For every (x, αi) ∈ Rn × E, (ϕ,ψ) ∈ V1 × V2, hj(·) ≡ h(·, αj) ∈ C2(Rn) for j 6= i, define

b̂
(
x, αi, ϕ,ψ, h

1, ..., hN
)
:=
〈
∇hi(x), b (x, αi, ϕ,ψ)

〉
− αih

i(x) + r (x, αi, ϕ,ψ) +

N∑
j=1

qijh
j(x), (4.37)

with b as in Assumption 4.11(a), r as in Assumption 4.15, and i such that hi ≡ h(·, αi). We also define

L̂
(
x, αi, h

1, ..., hN
)
:= sup
ϕ∈V1

inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1, ..., hN
)
+
1

2
Tr
[
[Hhi(x)] · a(x, αi)

]
.

LetΩ ⊂ Rn be a bounded domain, as in Chapter 3. Consider also its closure Ω̄.

The following is an extension of Theorem 3.4.

Theorem 4.19. Let Assumptions 4.11 and 4.15 hold. In addition, assume that there exist sequences
{
hjm

}
⊂ W2,p(Ω),

j = 1, ...,N and {ξm} ⊂ Lp(Ω), with p > 1, satisfying that:

(a) L̂
(
x, αi, h

1
m, ..., h

N
m

)
= ξm inΩ form = 1, 2, ..., and αi ∈ E.

(b) There exists a constantMj
1 such that

∥∥∥hjm∥∥∥
W2,p(Ω)

≤Mj
1 form = 1, 2, ... and j = 1, ...,N.

(c) ξm converges in Lp(Ω) to some function ξ.

Then:

(i) For each j = 1, ...,N, there exist a function hj ∈ W2,p(Ω) and a subsequence
{
mjk

}
⊂ {1, 2, ...} such that hj

mj
k

→ hj

as k→∞ strongly inW1,p(Ω), and weakly inW2,p(Ω). Moreover,

L̂
(
·, ·, h1, ..., hN

)
= ξ in Ω× E. (4.38)

(ii) If p > n, then hj
mj
k

→ hj in the norm of C0,η(Ω̄) for η < 1 − n
p

and j = 1, ...,N. If, in addition, ξ is in C0,β(Ω),

with β ≤ η, then hj belongs to C2,β(Ω).

A sketch of the proof is provided in Section B.3.
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Existence of value and saddle points

We establish now extensions of the main results of Sections 4.1.2 and 4.1.3.

First we give an analogue of Proposition 4.7.

Proposition 4.20. Fix p > n, and
(
π1, π2

)
in Π1 ×Π2. Then there exists a function v in C2(Rn × E) ∩ Bw(Rn × E) that

satisfies

αiv(x, αi) = r
(
x, αi, π

1, π2
)
+ Lπ

1,π2v(x, αi) (4.39)

for all (x, αi) ∈ Rn.

The proof of Proposition 4.20 resembles that of Proposition 4.7. The difference lies in the fact that one should
replace x by (x, αi), and hπ

1,π2

α,R (x) by

hπ
1,π2

R (x, αi) := Eπ
1,π2

x,αi

∫τπ1,π2R

0

exp(−St)r
(
x(t), α(t), π1, π2

)
dt

 ,
with St as in (4.28).

Theorem 4.21. If Assumptions 4.11, 4.13, and 4.15 hold, then there exist a function v ∈ C2(Rn × E) ∩ Bw(Rn × E) and
a pair of strategies

(
π1, π2

)
in Π1 × Π2 that satisfy the random discount HJB equations (4.34)–(4.36). Moreover, such a

function v coincides with the value function V of the random discounted game, and
(
π1, π2

)
is a corresponding saddle point.

The proof of this result is very much alike those of Theorems 4.9 and 4.10 (except one should replace x by
(x, αi) and put the space C2(Rn × E) ∩ Bw(Rn × E) in lieu of C2(Rn) ∩ Bw(Rn)). We should note that the proof of
Theorem 4.9 quotes Theorem 3.4, and that Theorem 4.10 uses Proposition 4.6. We should replace these with proper
invokations of Theorem 4.19 and the following result.

Proposition 4.22. Fix
(
π1, π2

)
in Π1 × Π2. If a function v ∈ C2(Rn × E) ∩ Bw(Rn × E) satisfies (4.39) for all (x, αi) ∈

Rn × E, then
v(x, αi) = V

(
x, αi, π

1, π2
)
, (4.40)

where V is the random discounted payoff criterion defined in (4.27).

Moreover, if the equality in (4.39) is replaced with “≤” or “≥”, then (4.40) holds with the corresponding inequality.

Proof. Fix
(
π1, π2

)
∈ Π1×Π2. Observe that Dynkin’s formula for Markov modulated diffusions (see [67, Theorem

1.45 and Lemma 1.9]) yields

Eπ
1,π2

x,αi
(exp{−ST }v(x(T), α(T))) = v(x, αi) + Eπ

1,π2

x,αi

[∫T
0

exp{−St}
(
−α(t)v(x(t), α(t)) + Lπ

1,π2v(x(t), α(t))
)
dt

]

= v(x, αi) − Eπ
1,π2

x,αi

[∫T
0

exp{−St}r
(
x(t), α(t), π1, π2

)
dt

]
(by (4.39)).

Define
α∗ := min

j=1,...,N
αj.

Since v is in Bw (Rn × E),∣∣∣Eπ1,π2x,αi
(exp{−ST }v(x(T), α(T)))

∣∣∣ ≤ Eπ
1,π2

x,αi

(
e−α∗T ‖v‖ww(x(T), α(T))

)
≤ e−α∗T ‖v‖w

[
e−cTw(x, α) +

d

c

(
1− e−cT

)]
(by (4.31))→ 0 as T →∞.
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This implies that

v(x, αi) = Eπ
1,π2

x,αi

[∫∞
0

exp{−St}r
(
x(t), αi, π

1, π2
)
dt

]
= V

(
x, αi, π

1, π2
)
.

Similarly, the proof of the second statement uses the same arguments by replacing the equality in (4.39) by either
“≤” or “≥”.

4.3 Concluding remarks

This chapter was intended to characterize saddle points for a general class of SDGs with discounted payoffs. We
studied two models of zero–sum games in infinite–horizon: with a fixed discount rate and with a rate of discount
driven by a Markov chain. We gave sufficient conditions for the existence of value functions and equilibria in both
contexts.

Theorems 4.10 and 4.21 are typical verification results, so they yield the existence of saddle points in the
infinite–horizon games we studied.

As for the value of the infinite–horizon game, the uniform ellipticity condition in Assumption 2.1(c) on the
diffusion (2.1), along with Theorem 3.4 provided us with a powerful tool. Proposition 4.7 was proved thanks to
Theorem 3.4 without making explicit use of semigroup theory. Moreover, this theorem has a broad range of ap-
plications in, for instance, the vanishing discount technique for proving the existence of equilibria in SDGs with
ergodic payoff and the policy iteration algorithm for finding those equilibria. The following chapters are devoted
to develop some of these applications.

We provided an analogous version of Theorem 3.4 for the context of the random discounted game in Section 4.2.
The key of Theorem 4.19 is the assumption that the diffusion (2.1) is replaced by the Markov–modulated dynamic
(4.25)–(4.26). The main changes we had to include in our model for this problem (with respect to Section 4.1) were
the substitution of x ∈ Rn by (x, α) ∈ Rn × E, and of the generator displayed in (2.3), by that of (4.29). Moreover,
Proposition 4.22 gave us that the Bellman equation associated with this game is of the form (4.5). However, this
fact was to be expected, since the controlled discrete–time version of the problem studied in [32] and [33] presents
the same feature.
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Chapter 5

The vanishing discount technique for
zero–sum SDGs with ergodic payoff

This chapter is devoted to the study of ergodic zero–sum SDGs. This type of games has been studied, for instance,
in [9, 18, 63]. Our main goal is to look for saddle points in the sense of (5.10) below, when the payoff function for
each player is given by (5.2). To ensure the validity of several results here, we will use the uniform w–exponential
ergodicity referred to in Theorem 2.10.

We will use the vanishing discount technique to study the connection between some Bellman–type equations
arising of a discounted game and the saddle points of an ergodic game. This approach is one of the most common
methods to deal with the average payoff criterion. It is so–named because it is based on the convergence of certain
sequence of discounted problems as in Chapter 4 (indexed by a discount rate α) as the discount rate vanishes, i.e.
α ↓ 0.
5.1 Average optimality

Recall that U1 and U2 are compact subsets of given vector normed spaces (see Assumption 2.1(d) and Section 2.1).
By the results in the beginning of Section 2.1, V1 and V2 are also compact spaces. Furthermore, consider the family
Π1×Π2 of all pairs of stationary randomized Markov strategies for players 1 and 2 (see Definition 2.4). Finally, let
R be a positive real number and let BR and B̄R be as in (2.20).

For each
(
π1, π2

)
∈ Π1 × Π2 and T ≥ 0, let

JT
(
x, π1, π2

)
:= Eπ

1,π2

x

[∫T
0

r
(
x(t), π1, π2

)
dt

]
(5.1)

be the total expected payoff of
(
π1, π2

)
over the time interval [0, T ], when the initial state is x ∈ Rn. The ergodic payoff

(also known as long–run average payoff) given the initial state x is given by

J
(
x, π1, π2

)
:= lim sup

T→∞
1

T
JT (x, π

1, π2). (5.2)

Proposition 5.1. Let Assumptions 2.1, 2.6, 2.9 and 2.12 hold. Then the payoff rate r is µπ1,π2–integrable for every pair(
π1, π2

)
∈ Π1 × Π2

Proof. Given
(
π1, π2

)
∈ Π1 × Π2, define

J(π1, π2) := µπ1,π2
(
r
(
·, π1, π2

))
=

∫
Rn
r
(
x, π1, π2

)
µπ1,π2(dx). (5.3)
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with µπ1,π2 as in (2.7).

By the definition of J
(
π1, π2

)
in (5.3), Assumption 2.12(b), (2.7) and (2.10) yield∣∣J (π1, π2)∣∣ ≤ ∫

Rn

∣∣r (x, π1, π2)∣∣µπ1,π2(dx) ≤M · µπ1,π2(w) <∞ (5.4)

for all
(
π1, π2

)
∈ Π1 × Π2. In fact, by (2.19),∣∣J (π1, π2)∣∣ ≤M · µπ1,π2(w) ≤M · d

c
, (5.5)

so that J
(
π1, π2

)
is uniformly bounded on Π1 × Π2. This yields the desired result.

It follows from (2.13) that the average payoff (5.2) coincides with the constant J
(
π1, π2

)
in (5.3) for every(

π1, π2
)
∈ Π1 × Π2. Indeed, note that JT defined in (5.1) can be expressed as

JT
(
x, π1, π2

)
= T · J

(
π1, π2

)
+

∫T
0

[
Eπ

1,π2

x r
(
x(t), π1, π2

)
− J
(
π1, π2

)]
dt.

Hence, multiplying the latter equality by 1
T

and letting T →∞, by (2.13), we obtain,

J
(
x, π1, π2

)
= lim sup

T→∞
1

T
JT
(
x, π1, π2

)
= J

(
π1, π2

)
for all x ∈ Rn. (5.6)

By virtue of this last expression, we can write (5.2) simply as J
(
π1, π2

)
.

We now define the constant values
U := inf

π2∈Π2
sup
π1∈Π1

J
(
π1, π2

)
(5.7)

and
L := sup

π1∈Π1
inf

π2∈Π2
J
(
π1, π2

)
. (5.8)

The function L is called the game’s lower value, and U is the game’s upper value. Clearly, we have L ≤ U . If these
two numbers coincide, then the game is said to have a value, say V . This number is the common value of L and U ,
i.e.,

V := L = U . (5.9)

As a consequence of (5.6) and (5.5), L and U are finite. This implies that V is also finite if the second equality in
(5.9) holds.

The basic problem we are concerned with is to find average payoff equilibria or saddle points of the average payoff
SDG. Namely, we are interested in pairs

(
π1∗, π

2
∗
)
∈ Π1 × Π2 for which

J
(
π1, π2∗

)
≤ J

(
π1∗, π

2
∗
)
≤ J

(
π1∗, π

2
)

(5.10)

for every
(
π1, π2

)
∈ Π1 × Π2. The set of pairs of average payoff equlibria is denoted by

(
Π1 × Π2

)
ae

.

Remark 5.2. Observe that if
(
π1∗, π

2
∗
)

is an average payoff equilibrium, then the game has a value J
(
π1∗, π

2
∗
)
=: V . As in the

discounted payoff case, the converse is not necessarily true.

Definition 5.3. We say that a constant J ∈ R, a function h ∈ C2(Rn)∩Bw(Rn), and a pair of strategies
(
π1, π2

)
∈ Π1×Π2

verify the average payoff optimality equations if, for every x ∈ Rn,

J = r
(
x, π1, π2

)
+ Lπ

1,π2h(x) (5.11)

= sup
ϕ∈V1

{
r
(
x,ϕ, π2

)
+ Lϕ,π

2

h(x)
}

(5.12)

= inf
ψ∈V2

{
r
(
x, π1, ψ

)
+ Lπ

1,ψh(x)
}
. (5.13)

In this case, the pair of strategies
(
π1, π2

)
∈ Π1 × Π2 satisfying (5.11)–(5.13) is called a canonical equilibrium.
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The following result holds by virtue of Theorem A.1. It is the ergodic version of Proposition 4.6 in the dis-
counted payoff case. We omit the proof because it is immediate.

Proposition 5.4. If there is a constant J, a function h in C2(Rn) ∩ Bw(Rn) and a pair
(
π1, π2

)
in Π1 × Π2 such that

J ≥ r
(
x, π1, π2

)
+ Lπ

1,π2h(x) for all x ∈ Rn, (5.14)

then
J ≥ J

(
π1, π2

)
. (5.15)

Similarly, if the inequality (5.14) is replaced by “≤”, then (5.15) should be replaced by the same inequality, i.e., if

J ≤ r
(
x, π1, π2

)
+ Lπ

1,π2h(x), then J ≤ J
(
π1, π2

)
.

Therefore, if the equality holds in (5.14), then we have J = J
(
π1, π2

)
.

Our next result ensures the existence of solutions to equations (5.11)–(5.13). Furthermore, it relates some com-
ponents of these equations with the properties of the game in (5.9) and (5.10).

Theorem 5.5. If Assumptions 2.1, 2.6, 2.9, and 2.12 hold, then:

(i) There exist a solution (J, h) ∈ R×
(
C2(Rn) ∩ Bw(Rn)

)
, and a pair

(
π1, π2

)
∈ Π1 ×Π2 such that the average payoff

optimality equations (5.11)–(5.13) are satisfied. Moreover, the constant J equals V , the value of the game, and the
function h is unique up to additive constants, under the extra condition that h(0) = 0.

(ii) A pair of strategies is an average payoff equilibrium if, and only if, it is canonical.

The proof we will offer is based on an extension of the vanishing discount technique for control problems (cf.
[8, Chapter II], [17, Corollary 6.2], and [71]). We present such extension in the following section.

5.2 The vanishing discount technique

We will prove the existence of solutions to the average payoff optimality equations (5.11)–(5.13) using the so–called
vanishing discount approach. The idea is to impose conditions on an associated α–discounted payoff game in such
a way that, when α ↓ 0, we obtain equations (5.11)–(5.13).

To this end, recall the payoff rate r given in Assumption 2.12, and let Vα be the expected α–discounted payoff
defined in (4.1), that is

Vα
(
x, π1, π2

)
:= Eπ

1,π2

x

[∫∞
0

e−αtr
(
x(t), π1, π2

)
dt

]
. (5.16)

In Theorem 4.9 we showed that, under Assumptions 2.1, 2.6 and 2.12, there exist a function vα in C2(Rn) ∩
Bw(Rn), and a pair

(
π1, π2

)
in Π1 × Π2 that satisfy (4.8)–(4.10), i.e.,

αvα(x) = r
(
x, π1, π2

)
+ Lπ

1,π2vα(x) (5.17)

= sup
ϕ∈V1

{
r
(
x,ϕ, π2

)
+ Lϕ,π

2

vα(x)
}

(5.18)

= inf
ψ∈V2

{
r
(
x, π1, ψ

)
+ Lπ

1,ψvα(x)
}
, (5.19)

for all x ∈ Rn. These results and Isaacs’ condition of Remark 2.15 give that

vα(x) := inf
ψ∈V2

sup
ϕ∈V1

Vα(x,ϕ,ψ) (5.20)

= sup
ϕ∈V1

inf
ψ∈V2

Vα(x,ϕ,ψ). (5.21)
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Passage to the limit as α ↓ 0:
We characterize the classical solution (J, h) ∈ R×

(
C2(Rn) ∩ Bw(Rn)

)
of (5.11)–(5.13) as the limit, as α ↓ 0, of vα in

(5.17)–(5.19).

Theorem 5.6. For each α > 0, let hα(x) := vα(x) − vα(0), where vα(·) satisfies (5.17)–(5.19). If Assumptions 2.1, 2.6, 2.9
and 2.12 hold, then there exists a constant J, a function h ∈ C2(Rn)× Bw(Rn), and a sequence αm ↓ 0 such that

αmvαm(0)→ J (5.22)

and, for all x ∈ Rn,

hαm(x) → h(x), (5.23)
αmhαm(x) → 0. (5.24)

In addition, the limit (J, h) satisfies (5.11)–(5.13).

The proof of Theorem 5.6 is based on Theorem 3.4. Hence we devote the following lines to the verification of
the hypotheses of such result.

Recall from Chapter 3 that Ω is a bounded, open and connected subset of Rn. To invoke Theorem 3.4, we
need to ensure the existence of {hm} ⊂ W2,p(Ω) and {ξm} ⊂ Lp(Ω), with p > 1, and a sequence {αm} of positive
numbers satisfying that:

(a) Form = 1, 2, ...,

ξm(x) = sup
ϕ∈V1

inf
ψ∈V2

{
r (x,ϕ,ψ) + Lϕ,ψhm(x)

}
− αmhm(x)

= inf
ψ∈V2

sup
ϕ∈V1

{
r (x,ϕ,ψ, ) + Lϕ,ψhm(x)

}
− αmhm(x)

for all x inΩ.

(b) There exists a constantM1 such that ‖hm‖W2,p(Ω) ≤M1 form = 1, 2, ...

(c) ξm converges in Lp(Ω) to some function ξ

(d) αm converges to some α.

To this end, let αm > 0 be a sequence of positive numbers such that αm ↓ 0 as m → ∞. Define hαm(x) :=
vαm(x)−vαm(0) for eachm = 1, 2, ... as in Theorem 5.6. A direct calculation yields that vαm(x) = hαm(x)+vαm(0)
satisfies (5.17)–(5.19), i.e.,

αmvαm(0) + αmhαm(x) = r
(
x, π1, π2

)
+ Lπ

1,π2hαm(x) (5.25)

= sup
ϕ∈V1

{
r
(
x,ϕ, π2

)
+ Lϕ,π

2

hαm(x)
}

(5.26)

= inf
ψ∈V2

{
r
(
x, π1, ψ

)
+ Lπ

1,ψhαm(x)
}

(5.27)

for all x ∈ Rn and all αm > 0.

Verification of the hypotheses of Theorem 3.4:

(a) Define the constant functions
ξm(x) := αmvαm(0) for all x ∈ Rn. (5.28)

Replacing these in (5.25), we can see that hypothesis (a) of Theorem 3.4 holds.
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(b) Fix an arbitrary R > 0, and let BR be as in (2.20). Then, by Theorem A.3, there exists a constant C0 such that,
for fixed p > n,

‖hαm‖W2,p(BR) ≤ C0
(
‖hαm‖Lp(B2R) +

∥∥r (·, π1, π2)∥∥
Lp(B2R)

+ |αmvαm(0)|
)
. (5.29)

Note now that, by (5.16), for every
(
π1, π2

)
in Π1 × Π2 and α > 0, we get

∣∣Vα (x, π1, π2)− Vα (0, π1, π2)∣∣ ≤ ∫∞
0

e−αt
∣∣∣Eπ1,π2x r

(
x(t), π1, π2

)
− Eπ

1,π2

0 r
(
x(t), π1, π2

)∣∣∣dt
≤
∫∞
0

e−αt
∣∣∣Eπ1,π2x r

(
x(t), π1, π2

)
− J
(
π1, π2

)∣∣∣dt
+

∫∞
0

e−αt
∣∣∣Eπ1,π20 r

(
x(t), π1, π2

)
− J
(
π1, π2

)∣∣∣dt
≤
∫∞
0

CMe−(α+δ)t (w(x) +w(0))dt (by (2.13))

withM as in Assumption 2.12(b). Let M̂ := CM
δ

(1+w(0)). Since w ≥ 1, we see that∣∣Vα (x, π1, π2)− Vα (0, π1, π2)∣∣ ≤ M̂w(x).
Hence, since M̂ is independent of

(
π1, π2

)
, it follows from (5.20)–(5.21) that

|hαm(x)| ≤ sup
(π1,π2)∈Π1×Π2

∣∣Vαm (x, π1, π2)− Vαm (0, π1, π2)∣∣ ,
and so

|hαm(x)| ≤ M̂w(x) for all x ∈ Rn. (5.30)

Furthermore, the relation (4.3) implies that the sequence in (5.28) is bounded by a positive number, say ρ.
Combine (5.29), (5.30) and Assumption 2.12(b) to obtain that, independently of our choice for αm,

‖hαm‖W2,p(BR) ≤ C0

(
M̂ ‖w‖Lp(B2R) +M ‖w‖Lp(B2R) + ρ

)
≤ C0

(
M̂+M

)
|B̄2R|

1/p max
x∈B̄2R

w(x) + ρC0, (5.31)

where
∣∣B̄2R∣∣ denotes the volume of the closed ball B̄2R with radius 2R. Hence, by (5.31), hypothesis (b) of

Theorem 3.4 holds.

(c) Since αmvm(0) in (5.28) is bounded, there exist a number J and a subsequence of {αm} (again denoted as
{αm}), such that (5.22) holds. Hence hypothesis (c) of Theorem 3.4 follows.

(d) Since α ↓ 0, hypothesis (d) trivially holds.

Proof of Theorem 5.6. Since hypotheses (a)–(d) of Theorem 3.4 hold, we invoke that result to assert the existence of
a function h in the classW2,p(BR) such that hαm (or a subsequence thereof) converges to h in BR. In fact, we can
use (5.31) again, along with the compactness of the embedding W2,p(BR) ↪→ C0,η(B̄R) for η < 1 and p > n, as
well as Arzelà–Ascoli’s Theorem, to ensure that the convergence hαm → h is uniform on any bounded, open and
connected subset BR ⊂ B2R, and that h actually belongs to C2,β(BR) for all 0 < β < 1.

Also observe that, by (5.31), αmhαm(x)→ 0 inW2,p(BR). Indeed, let

M1 := C0

[
(M̂+M)|B̄2R|

1/p max
x∈B̄2R

w(x) + ρ

]
to see that:

‖αmhαm‖W2,p(BR) = αm ‖hαm‖W2,p(BR)
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≤ αmM1→ 0 as α ↓ 0.
This proves (5.24).

To prove the last part of Theorem 5.6, we apply Theorem 3.4 to obtain

J = sup
ϕ∈V1

inf
ψ∈V2

{
r (x,ϕ,ψ) + Lϕ,ψh(x)

}
(5.32)

= inf
ψ∈V2

sup
ϕ∈V1

{
r (x,ϕ,ψ) + Lϕ,ψh(x)

}
(5.33)

for all x ∈ BR.

Since the choice of R > 0 was arbitrary, we can extend the convergence hαm → h to all of Rn with h satisfying
(5.32)–(5.33). Actually, by (5.30), we can ensure that hαm is in Bw(Rn). Now, the uniform convergence of hαm to h
on bounded, open and connected subsets of Rn and the use of Lemma A.4, yield that h belongs to C2(Rn)∩Bw(Rn).

Finally, the existence of a pair
(
π1, π2

)
∈ Π1 × Π2 such that equations (5.11)–(5.13) are satisfied, is given by

(5.32)–(5.33) and by Theorem A.2.

5.3 Proof of Theorem 5.5.

(i) The proof of the existence of a constant J and a function h such that (5.11)–(5.13) hold was given in Theorem 5.6.

On the other hand, Propositions 4.2 and 4.3 in [50] combined with (5.11)–(5.13) and Proposition 5.4 yield that
J = V . Further, the proof that h is unique up to additive constants requires us to note that if h satisfies (5.11)–
(5.13), then so does h + k, with k constant, because Lu1,u2 is a differential operator (see (2.3)). To prove the
uniqueness of solutions to equations (5.11)–(5.13), let us suppose that (J, h1) and (J, h2) are two solutions in R ×(
C2(Rn) ∩ Bw(Rn)

)
of (5.11)–(5.13), that is

J = r(x, π1, π2) + Lπ
1,π2h1(x),

J = r(x, π1, π2) + Lπ
1,π2h2(x).

The substraction of these two equalities yields that Lπ1,π2η(x) = 0, with η(·) := h1(·) − h2(·). Hence, by Lemma
2.11,

η(x) = µπ1,π2(η) for all x ∈ Rn
= µπ1,π2(h1 − h2).

But µπ1,π2(h1 − h2) must be zero, since η(0) = h1(0) − h2(0) = 0. This gives h1 ≡ h2.

(ii) The only if part. We use the same arguments in the proof of [17, Corollary 6.2]. Suppose that
(
π1∗, π

2
∗
)

is an
average equilibrium that is not canonical. Then, either (5.12) or (5.13) does not hold. Assume that, say, (5.12) is not
satisfied. Then, by the continuity of x → r

(
x, π1, π2

)
+ Lπ1,π2h(x), there exists a constant ε > 0 and a Borel set

B ⊂ Rn, with λ(B) > 0 (recall that λ stands for the Lebesgue measure on Rn) such that

J ≥ r
(
x, π1∗, π

2
∗
)
+ Lπ

1
∗,π

2
∗h(x) + εχB(x) for x ∈ Rn, (5.34)

where χB(·) stands for the indicator function of B. Combining Theorem A.1 and (5.34) we obtain, for all t ≥ 0,

Eπ
1
∗,π

2
∗

x h (x(t)) − h(x) ≤ Jt− Eπ
1
∗,π

2
∗

x

(∫t
0

r
(
x(s), π1∗, π

2
∗
)
ds

)
− εEπ

1
∗,π

2
∗

x

(∫t
0

χB (x(s))ds

)
. (5.35)

Multiplying by t−1 and letting t→∞ yields

J
(
π1∗, π

2
∗
)
+ εµπ1∗,π2∗ (B) ≤ J (by (2.13) and (2.15)). (5.36)
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Moreover, by [3, Theorem 4.3], µπ1∗,π2∗ is equivalent to the Lebesgue measure λ. Hence λ(B) > 0 yields µπ1∗,π2∗ (B) >
0, and thus J

(
π1∗, π

2
∗
)
< J = V , which contradicts the equilibrium property of

(
π1∗, π

2
∗
)
.

The if part. Suppose that
(
π1∗, π

2
∗
)

satisfies the average optimality equations. Then, by (5.11) and Proposition 5.4 we
obtain that

(
π1∗, π

2
∗
)

is average optimal. �

5.4 Concluding remarks

This chapter introduces the average payoff criterion for SDGs. This criterion is the basis for the developments
to come in our work, such as the so–named policy iteration algorithm and the obtention of bias and overtaking
equilibria. A central hypothesis for our developments is the uniform w–exponential ergodicity condition (2.13).
The main result is Theorem 5.5, because it gives us elements to study ergodic payoff games as a limit of discounted
payoff problems. A key to this fact is Theorem 3.4.
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Chapter 6

Policy iteration for zero–sum SDGs with
ergodic payoff

The results in Chapter 5 (specially Theorem 5.5) ensure the existence of the pairs (J, h) in R×
(
C2(Rn) ∩ Bw(Rn)

)
and

(
π1, π2

)
in Π1 × Π2 to the average optimality equations (5.11)–(5.13). However, the question now is: how can

we find (or at least approximate) values of J(= V), h, and
(
π1, π2

)
? Providing an answer to this and other related

questions is the goal of this chapter. Our aim is to give conditions under which a certain algorithm, in our case, the
policy iteration algorithm (PIA) produces convergent sequences of values and policies for a SDG with ergodic payoff.

The PIA was used by Fleming [26] to study some finite horizon controlled diffusion problems in 1963. Flem-
ing himself attributed the PIA to Bellman. Now, since Howard [49] determined optimal policies for processes in
infinite–horizon by proposing a solution based upon successive approximation in a policy space, some authors
know the PIA as Howard’s algorithm. It was studied later by Bismut [13] and Puterman [81, 82], who found its
convergence rate for controlled diffusions in compact regions of Rn. Arapostathis [5] studied a version of the PIA
also for controlled diffusions. For discrete–time zero–sum games, Van der Wal [94] presented a convergent version
of the PIA under the assumption that the state space and the action space are both finite. The goal of the PIA for a
SDG is to generate sequences of strategies and value functions that converge to the equilibrium and value function
of the SDG.

The algorithm we present resembles that introduced in [46] for controlled Markov decision processes in Borel
spaces and is inspired in the Hoffman–Karp [48] version presented in [94]. In our algorithm, we propose to fix the
action of one of the players to find the other player’s best action, thus reducing the game in that stage to a Markov
control process. Then, we find the current value of the game and we move on to the next iteration, where we fix
the other player’s best action.

The set of assumptions we used in Chapter 5 ensures the convergence of the PIA to a saddle point of the zero–
sum SDG with ergodic payoff. To prove this, we will use again Theorem 3.4 and, for a given pair of strategies, we
will use the concept of its bias from the game’s value (see equation (6.6) below).

Throughout this chapter we will consider that Assumptions 2.1, 2.6, 2.9 and 2.12 hold.

6.1 The policy iteration algorithm

We now introduce the PIA, also known as policy improvement algorithm. The version we present in this section
was inspired by the results in [46, 94].
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The PIA:

Step 1. Setm = 0. Select a strategy π20 ∈ Π2, and define J
(
π1−1, π

2
−1

)
:= −∞.

Step 2. Find a policy π1m ∈ Π1, a constant J
(
π1m, π

2
m

)
, and a function hm : Rn → R of class C2(Rn) ∩ Bw(Rn) such

that
(
J
(
π1m, π

2
m

)
, hm

)
is a solution of (6.1)–(6.2):

J
(
π1m, π

2
m

)
= sup

ϕ∈V1

[
r
(
x,ϕ, π2m

)
+ Lϕ,π

2
mhm(x)

]
(6.1)

= r
(
x, π1m, π

2
m

)
+ Lπ

1
m,π

2
mhm(x) for all x ∈ Rn. (6.2)

Observe that
J
(
π1m, π

2
m

)
≥ inf
ψ∈V2

[
r
(
x, π1m, ψ

)
+ Lπ

1
m,ψhm(x)

]
for all x ∈ Rn. (6.3)

Step 3. If J
(
π1m, π

2
m

)
= J

(
π1m−1, π

2
m−1

)
, then J

(
π1m, π

2
m

)
is the value of the game and

(
π1m, π

2
m

)
is a saddle point.

Terminate PIA. Otherwise, go to step 4.

Step 4. Determine a strategy π2m+1 ∈ Π2 that attains the minimum on the right hand side of (6.3), i.e., for all x ∈ Rn

r
(
x, π1m, π

2
m+1

)
+ Lπ

1
m,π

2
m+1hm(x) = inf

ψ∈V2

[
r
(
x, π1m, ψ

)
+ Lπ

1
m,ψhm(x)

]
. (6.4)

Increasem in 1 and go back to step 2.

Remark 6.1. Observe that Remark 2.15 makes us indifferent between using the PIA version we have proposed, and using a
modification that minimizes in (6.2) in step 2, and maximizes in (6.4) in step 4.

Definition 6.2. The PIA is said to converge if the sequence J
(
π1m, π

2
m

)
converges to the value of the game defined in (5.10).

That is,
J
(
π1m, π

2
m

)→ V.
To ensure the convergence of the PIA, we need to guarantee it is well–defined. To do this, it is necessary to

satisfy the following conditions.

1. For every pair
(
π1, π2

)
∈ Π1 × Π2, there exists an invariant probability measure µπ1,π2 . This is the first

consequence of Assumption 2.6.

2. For every pair
(
π1, π2

)
∈ Π1×Π2, the payoff rate r

(
·, π1, π2

)
is µπ1,π2–integrable, so that (5.3) holds, that is,

J
(
π1, π2

)
:= µπ1,π2

(
r
(
·, π1, π2

))
=

∫
Rn
r
(
x, π1, π2

)
µπ1,π2(dx).

This follows from Proposition 5.1.

3. For every pair
(
π1, π2

)
there is a unique solution

(
J
(
π1, π2

)
, hπ1,π2

)
to the Poisson equation

J
(
π1, π2

)
= r

(
x, π1, π2

)
+ Lπ

1,π2hπ1,π2(x) for all x ∈ Rn, (6.5)

which is guaranteed by Proposition 6.4 below.

4. For each π2m ∈ Π2, there exists a strategy π1m ∈ Π1 such that (6.2) holds. This is indeed the case by virtue of
Assumption 2.12, the compactness of V1, and Theorem A.2.

5. For every function hm in a suitable set, there exists a strategy π2m+1 ∈ Π2 such that (6.4) holds. This statement
is true by Assumption 2.12, the compactness of V2, and again Theorem A.2.

As already noted above, a necessary condition for the algorithm to be well–defined is the existence of a solution(
J
(
π1, π2

)
, hπ1,π2

)
to the Poisson equation (6.5). To prove this, we introduce the concept of bias of

(
π1, π2

)
.
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Definition 6.3. Let
(
π1, π2

)
∈ Π1 × Π2. The bias of

(
π1, π2

)
is the function given by

hπ1,π2(x) :=

∫∞
0

[
Eπ

1,π2

x r
(
x(t), π1, π2

)
− J
(
π1, π2

)]
dt. (6.6)

Observe that this function is finite–valued because (2.13) and the Assumption 2.12(b) give, for all t ≥ 0,∣∣∣Eπ1,π2x r
(
x(t), π1, π2

)
− J
(
π1, π2

)∣∣∣ ≤ Ce−δtMw(x). (6.7)

Hence, by (6.6) and (6.7), the bias of
(
π1, π2

)
is such that

|hπ1,π2(x)| ≤ δ−1CMw(x), (6.8)

and so
‖hπ1,π2‖w ≤ δ

−1CM.

This means that the bias hπ1,π2 is a finite–valued function and, in fact, is in Bw(Rn). Actually, its w–norm is
uniformly bounded on

(
π1, π2

)
∈ Π1×Π2. The following result is necessary to ensure that the PIA is well–defined.

Proposition 6.4. For each
(
π1, π2

)
∈ Π1×Π2, the pair

(
J
(
π1, π2

)
, hπ1,π2

)
is the unique solution of the Poisson equation

(6.5) for which the µπ1,π2–expectation of hπ1,π2 is zero:

µπ1,π2 (hπ1,π2) =

∫
Rn
hπ1,π2(x)µπ1,π2(dx) = 0. (6.9)

Moreover, hπ1,π2 is in C2(Rn) ∩ Bw(Rn).

Proof. A slight variation of the vanishing discount technique of Section 5.2 gives us that, for fixed
(
π1, π2

)
∈

Π1 × Π2, the Poisson equation (6.5) has a solution h̃π1,π2 , which is a member of C2(Rn) ∩ Bw(Rn), i.e.,

J̃
(
π1, π2

)
= r

(
x, π1, π2

)
+ Lπ

1,π2 h̃π1,π2(x) for all x ∈ Rn. (6.10)

The difference between the technique of Section 5.2 and the one we use here, is that, instead of invoking Theorem
3.4, we invoke Corollary 3.5.

To obtain (6.9) first note that, by (2.7) and (6.8), hπ1,π2 is indeed µπ1,π2–integrable for every
(
π1, π2

)
in Π1×Π2.

Then, in (6.9) choose the distribution of the initial state to be µπ1,π2 and so (6.9) follows from Fubini’s theorem and
the invariance of µπ1,π2 . Moreover, the fact that hπ1,π2 is in Bw(Rn) follows from (6.8).

On the other hand, the fact that J̃
(
π1, π2

)
coincides with the ergodic payoff J

(
π1, π2

)
in (5.3) is a direct conse-

quence of the proof of Proposition 5.4 and the part that adresses uniqueness in Theorem 5.5(i).

Next, to ensure that h̃π1,π2 equals the bias hπ1,π2 in (6.6) for all
(
π1, π2

)
∈ Π1 × Π2, we can use Theorem A.1

on h̃π1,π2(x(t)) to obtain

Eπ
1,π2

x

[
h̃π1,π2(x(t))

]
= h̃π1,π2(x) + J̃

(
π1, π2

)
t− Eπ

1,π2

x

[∫t
0

r
(
x(s), π1, π2

)
ds

]
.

This implies

h̃π1,π2(x) = Eπ
1,π2

x

[∫t
0

(
r
(
x(s), π1, π2

)
− J
(
π1, π2

))
ds

]
+ Eπ

1,π2

x

[
h̃π1,π2(x(t))

]
. (6.11)

Since hπ1,π2 is in Bw(Rn) for all
(
π1, π2

)
∈ Π1 × Π2, we see that the uniform w–exponential ergodicity condition

(2.12) yields that the second term of the right hand side of (6.11) converges to µπ1,π2
(
h̃π1,π2

)
as t goes to infinity;

but, by (6.9), this last limit becomes zero. Therefore, letting t→∞ in both sides of (6.11), we obtain

h̃π1,π2(x) = Eπ
1,π2

x

[∫∞
0

(
r
(
x(s), π1, π2

)
− J
(
π1, π2

))
ds

]
,

which coincides with the bias hπ1,π2 defined in (6.6). These facts yield also uniqueness of solutions to equation
(6.5), and Proposition 6.4 follows.
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6.2 Convergence

This section is intended to prove that the PIA converges. But first, we present the following extension of [46,
Lemma 4.5]. Part (b) of Lemma 6.5, along with (6.3) gives that if J

(
π1m, π

2
m

)
= J

(
π1m+1, π

2
m+1

)
in the PIA, then(

π1m, π
2
m

)
is a saddle point of the average SDG.

Lemma 6.5. Let
(
π1, π2

)
∈ Π1 × Π2 be an arbitrary pair of randomized stationary strategies. Let π1∗ ∈ Π1 be such that

J
(
π1∗, π

2
)

= sup
ϕ∈V1

[
r
(
x,ϕ, π2

)
+ Lϕ,π

2

h(x)
]

(6.12)

= r
(
x, π1∗, π

2
)
+ Lπ

1
∗,π

2

hπ1∗,π2(x) for all x ∈ Rn, (6.13)

and let π2∗ ∈ Π2 be such that

inf
ψ∈V2

[
r
(
x, π1∗, ψ

)
+ Lπ

1
∗,ψhπ1∗,π2(x)

]
= r

(
x, π1∗, π

2
∗
)
+ Lπ

1
∗,π

2
∗hπ1∗,π2(x) (6.14)

for all x ∈ Rn. Then

(a) J
(
π1∗, π

2
∗
)
≤ J

(
π1∗, π

2
)
, and

(b) if J
(
π1, π2∗

)
≤ J

(
π1∗, π

2
∗
)
, then

(
π1∗, π

2
∗
)

is a saddle point of the SDG with average payoff.

Proof. The relations (6.12)–(6.14) imply

r
(
x, π1∗, π

2
∗
)
+ Lπ

1
∗,π

2
∗hπ1∗,π2∗ (x)

≤ r
(
x, π1∗, π

2
)
+ Lπ

1
∗,π

2

hπ1∗,π2(x)

= J
(
π1∗, π

2
)
.

An application of Proposition 5.4 yields (a). Part (b) of the result is immediate from (a) and (5.10).

Proposition 6.6 guarantees the existence of a pair of policies
(
π1∗, π

2
∗
)

in Π1 × Π2 that satisfies that, for every
fixed x ∈ Rn, there exists a subsequencemk ≡ mk(x) of {m} such that(

π1mk(·|x), π
2
mk

(·|x)
)→ (

π1∗(·|x), π2∗(·|x)
)

as k→∞ (6.15)

in the topology of weak convergence of V1 × V2. This type of policy convergence was first introduced in [87,
Lemma 4] for the case of nonstationary, deterministic, discrete–time policies. It can also be found in [88, Proposi-
tion 12.2] and [45, Theorem D.7]. In this case we say that the sequence

{(
π1m, π

2
m

)
: m = 1, 2, ...

}
converges in the

sense of Schäl to
(
π1∗, π

2
∗
)
.

Proposition 6.6. Let
{(
π1m, π

2
m

)
: m = 1, 2, ...

}
⊂ Π1 × Π2 be the sequence generated by the PIA. If Assumptions

2.1, 2.6 and 2.12 hold, then, there exists
(
π1∗, π

2
∗
)
∈ Π1 × Π2 such that

(
π1∗, π

2
∗
)

is the limit in the sense of Schäl of{(
π1m, π

2
m

)
: m = 1, 2, ...

}
.

Proof. Fix x ∈ Rn. By the compactness of V1 × V2, we can ensure the existence of a subsequence mk ≡ m`k(x),
` = 1, 2, such that π`mk(·|x) → π`∗(·|x). Using again the compactness of V`, ` = 1, 2, we easily see that π`∗(·|x) is a
probability measure. Furthermore, for all B ⊆ U`, by [87, Lemma 4], π`∗(B|·) is measurable on Rn. Hence, π`∗ is in
Π`. This proves the result.

Theorem 6.7. Let p > n. Let Assumptions 2.1, 2.6, 2.9 and 2.12 hold. In addition, let
(
π1m, π

2
m

)
be a pair of randomized

stationary policies generated by the PIA. Then
{(
π1m, π

2
m

)
: m = 1, 2, ...

}
converges in the sense of Schäl to a saddle point(

π1∗, π
2
∗
)

of the average SDG. Therefore the PIA converges.
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Proof. For each pair
(
π1m, π

2
m

)
generated by the PIA, Proposition 6.4 ensures the existence of a function hm ∈

C2(Rn) ∩ Bw(Rn) such that (6.2) holds. Now, an analogous argument to those presented in Sections 4.1.2 and 5.2
allows us to invoke Corollary 3.5, thus establishing the existence of a function h ∈ C2(Rn) ∩ Bw(Rn) such that

lim
m→∞hm = h for all x ∈ Rn.

On the other hand, observe that Proposition 6.6 asserts the existence of the limit
(
π1∗, π

2
∗
)

(in the sense of Schäl) of
the sequence of policies

{(
π1m, π

2
m

)}
generated by the PIA.

Now, fix an arbitrary state x ∈ Rn and let mk be as in (6.15). Next, in (6.2), replace m by mk and let k → ∞ to
obtain

J
(
π1∗, π

2
∗
)
= r

(
x, π1∗, π

2
∗
)
+ Lπ

1
∗,π

2
∗h(x).

We shall use Lemma 6.5 to conclude the proof. Namely, observe that (6.1) in step 2 of the PIA ensures that (6.12)
holds. In addition, (6.4) in step 4 yields (6.14). Hence, Lemma 6.5(b) asserts that

(
π1∗, π

2
∗
)

is a saddle point of the
ergodic game and the result is thus proved.

6.3 Concluding remarks

This chapter gives sufficient conditions under which the PIA converges in a certain class of games. The version of
the algorithm under study is an extension to the continuous–time scheme of that presented in [46] and of Hoffman–
Karp [94] algorithm. Besides, our state space and action sets are nondenumerable. Our two results, Lemma 6.5
and Theorem 6.7 are inspired in [46, Lemma 4.5] and [46, Theorem 4.3], respectively.
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Chapter 7

Bias and overtaking equilibria for zero–sum
SDGs

The aim of the present chapter is to study conditions ensuring the existence of bias and overtaking equilibria in
a zero–sum SDG. We will introduce these criteria by means of the classic average optimality criterion studied in
Chapters 5 and 6.

The chapter represents an extension to SDGs of some bias and overtaking optimality results for controlled
diffusions [52] and for continuous–time Markov games with a denumerable state–space [78]. In some stochastic
control problems, the concepts of bias and overtaking optimality are equivalent (see, for instance, [52]). However,
the evidence found in [78] indicates that in continuous–time games this equivalence does not hold, although this
remains an open problem for games with a nondenumerable state space.

7.1 Bias optimality

Throughout the following we will suppose that Assumptions 2.1, 2.6, 2.9 and 2.12 hold.

We recall that the set of strategies that satisfy (5.10) is denoted by
(
Π1 × Π2

)
ae

, that is,
(
π1∗, π

2
∗
)

is in
(
Π1 × Π2

)
ae

if and only if
J
(
π1, π2∗

)
≤ J

(
π1∗, π

2
∗
)
≤ J

(
π1∗, π

2
)

for every
(
π1, π2

)
∈ Π1 × Π2.

Recall as well Definition 6.3 of the bias hπ1,π2 and its characterization as solution of the Poisson equation given in
Proposition 6.4.

The following definition uses the concept of average payoff equilibira introduced above.

Definition 7.1. We say that an average payoff equilibrium
(
π1∗, π

2
∗
)
∈
(
Π1 × Π2

)
ae

is a bias equilibrium if

hπ1,π2∗ (x) ≤ hπ1∗,π2∗ (x) ≤ hπ1∗,π2(x) (7.1)

for all x ∈ Rn and every pair of average payoff equilibria
(
π1, π2

)
∈
(
Π1 × Π2

)
ae

. The function hπ1∗,π2∗ is called the
optimal bias function.

The next result is an extension to SDGs of [52, Proposition 4.2]. It gives an expression for the bias function of(
π1, π2

)
by using any solution h of the average optimality equations (5.11)–(5.13).

Proposition 7.2. If
(
π1, π2

)
∈
(
Π1 × Π2

)
ae

, then its bias hπ1,π2 and any solution h of the average optimality equations
(5.11)–(5.13) coincide up to an additive constant; in fact,

hπ1,π2(x) = h(x) − µπ1,π2(h) for all x ∈ Rn. (7.2)
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Proof. Let
(
π1, π2

)
∈
(
Π1 × Π2

)
ae

be an arbitrary average payoff equilibrium. Then
(
π1, π2

)
satisfies Theorem

5.5(ii) with J = V , i.e.,

V = r
(
x, π1, π2

)
+ Lπ

1,π2h(x) for all x ∈ Rn. (7.3)

In addition, the Poisson equation for
(
π1, π2

)
is

V = r
(
x, π1, π2

)
+ Lπ

1,π2hπ1,π2(x) for all x ∈ Rn. (7.4)

The subtraction of (7.3) from (7.4) yields that h − hπ1,π2 is a harmonic function. Consequently, (7.2) follows from
Theorem A.1, Lemma 2.11 and (6.9).

If the optimal bias function hπ1∗,π2∗ exists, then, by Proposition 6.4, it is in C2(Rn) ∩ Bw(Rn) for any bias equi-
librium

(
π1∗, π

2
∗
)
.

Let
(
Π1 × Π2

)
bias

be the family of bias equilibria. By Definition 7.1,(
Π1 × Π2

)
bias

⊂
(
Π1 × Π2

)
ae
.

Let (J, h) ∈ R ×
(
C2(Rn) ∩ Bw(Rn)

)
be a solution of the average optimality equations (5.11)–(5.13). We define

for every x ∈ Rn the sets

Π1(x) :=

{
ϕ ∈ V1 : J = inf

ψ∈V2

[
r (x,ϕ,ψ) + Lϕ,ψh(x)

]}
, (7.5)

Π2(x) :=

{
ψ ∈ V2 : J = sup

ϕ∈V1

[
r (x,ϕ,ψ) + Lϕ,ψh(x)

]}
. (7.6)

We now present an extension of [78, Lemma 4.6].

Lemma 7.3. For every x ∈ Rn, Π1(x) and Π2(x) are convex compact sets. Moreover, the multifunctions x 7→ Π1(x) are
such that Π1(·) is upper semicontinuous, and Π2(·) is lower semicontinuous.

Proof. Recall from Section 2.1 that the sets V1 and V2 (endowed with the topology of weak convergence) are
compact. Thus, we only need to show that Π`(x) is a closed set (` = 1, 2). But this is a consequence of Lemma
4.4 in [78] and Lemma 2.14. The proof that Π1(x) and Π2(x) are convex mimics that of Lemma 4.6 in [78]. The
upper semicontinuity of Π1(·) was given, for the case of controlled diffusions, in [52, Lemma 5.2]. However, it is
not difficult to see why it holds in the present case (the same goes for the lower semicontinuity of Π2(·)).

Remark 7.4. By Theorem 5.5(ii),
(
π1, π2

)
is in

(
Π1 × Π2

)
ae

if and only if π1(·|x) is in Π1(x) and π2(·|x) is in Π2(x) for
all x ∈ Rn.

Theorem 7.5. The set
(
Π1 × Π2

)
bias

is nonempty.

Proof. Let
(
π1, π2

)
∈
(
Π1 × Π2

)
ae

be an average payoff equilibrium. Using the expression (7.2) for the bias func-
tion hπ2,π2 , we obtain that finding bias equilibria is equivalent to solving a new SDG with ergodic payoff. Let us
call this problem bias game. The components of this game are:

• The dynamic system (2.1),

• The action sets Π1(x) and Π2(x) for each x ∈ Rn, and

• The reward rate
r ′
(
x, π1, π2

)
:= −h(x).
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Observe that the bias game satisfies Assumptions 2.1, 2.6, 2.9 and 2.12. Hence, Theorem 5.5 ensures the existence
of a constant J̃; a function h̃ ∈ C2(Rn) ∩ Bw(Rn); and a pair

(
π1, π2

)
such that

(
π1(·|x), π2(·|x)

)
is in Π1(x)×Π2(x)

for every x ∈ Rn. Moreover, h̃ and
(
π1, π2

)
satisfy the average payoff optimality equations (5.11)–(5.13); that is,

J̃ = −h(x) + Lπ
1,π2 h̃(x) (7.7)

= sup
ϕ∈Π1(x)

[
−h(x) + Lϕ,π

2

h̃(x)
]

(7.8)

= inf
ψ∈Π2(x)

[
−h(x) + Lπ

1,ψ2 h̃(x)
]
. (7.9)

Hence, by virtue of Theorem 5.5(ii) and (7.2),
(
π1, π2

)
is a bias equilibrium. i.e.,

(
π1, π2

)
∈
(
Π1 × Π2

)
bias

. By
(7.7)–(7.9) the value of the bias game is

J̃ = µπ1,π2(−h) := V∗h.

Let
(
π1, π2

)
∈
(
Π1 × Π2

)
bias

. Using (7.2), we define

H(x) := hπ1,π2(x) = h(x) + V∗h, (7.10)

where V∗h is the value of the bias game.

Bias optimality equations

We give a characterization of bias equilibria by means of the bias optimality equations defined as follows.

Definition 7.6. We say that the constant J ∈ R, the functionsH, h̃ ∈ C2(Rn)∩ Bw(Rn) and the pair
(
π1, π2

)
∈ Π1 ×Π2

verify the bias optimality equations if J andH satisfy the average optimality equations (5.11)–(5.13) and, in addition for every
x ∈ Rn, h̃ satisfies

H(x) = Lπ
1,π2 h̃(x) (7.11)

= sup
ϕ∈Π1(x)

Lϕ,π
2

h̃(x) (7.12)

= inf
ψ∈Π2(x)

Lπ
1,ψh̃(x). (7.13)

Theorem 7.7. Under our hypotheses, the following assertions are true.

(i) A solution of the bias optimality equations (5.11)–(5.13) and (7.11)–(7.13), with H(0) = V∗h, exists, is unique, and,
further, J = V , with V as in (5.9).

(ii) A pair of stationary strategies
(
π1, π2

)
∈ Π1 × Π2 is a bias equilibrium if and only if it verifies the bias optimality

equations.

Proof. By Theorem 5.5 we know that the equations (5.11)–(5.13) have a unique solution (V, h). Now, since Lπ1,π2

is a differential operator, it follows that, if h satisfies (5.11)–(5.13), then, so doesH in (7.10). On the other hand, the
same arguments in the proof of Theorem 7.5 ensure the existence of a function, say h̃ ∈ C2(Rn) ∩ Bw(Rn) such
that

(
V∗h, h̃

)
is the unique solution to the average optimal equations for the bias game with reward rate −h(·), i.e.,(

V∗h, h̃
)

satisfies (7.7)–(7.9). Hence, from (7.10) we can see thatH(x) satisfies (7.11)–(7.13).

Part (ii) follows from Theorem 5.5(ii) applied to the bias game.
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7.1.1 The PIA for the bias game

By the proof of Theorem 7.5, the bias game can be expressed as a SDG with a particular average payoff. We will
use this and a modification of the PIA presented in Chapter 6 to find another characterization of bias equilibria.

We assume that the original SDG with average payoff of Chapter 5 has been solved, i.e., J is the game value,(
π10, π

2
0

)
belongs to

(
Π1 × Π2

)
ae

, and h(x) = hπ1
0
,π2
0
(x) + µπ1

0
,π2
0
(h) for all x ∈ Rn.

Step 1. Setm = 0. Fix π20 ∈ Π2(x) and define J̃0 := −∞.

Step 2. Find a policy π1m(·|x) ∈ Π1(x), a constant J̃m, and a function h̃m : Rn → R such that
(
J̃m, h̃m

)
is a solution

of (7.8).

Step 3. If J̃m = J̃m−1, then
(
π1m, π

2
m

)
∈
(
Π1 × Π2

)
bias

. Terminate PIA. Otherwise, go to step 4.

Step 4. Determine an average optimal strategy π2m+1(·|x) ∈ Π2(x) that attains the minimum on (7.9).

Increasem in 1 and go to step 2.

Analogously to the end of Section 6.1, there are some critical parts we must verify to ensure that this version of
the PIA for the bias game is well–defined and yields a pair of bias equilibria.

1. In step 2, π1m(·|x) is such that

J̃m = sup
ϕ∈Π1(x)

[
−h(x) + Lϕ,π

2
m h̃m(x)

]
= −h(x) + Lπ

1
m,π

2
m h̃m(x),

which is consistent with Theorem 7.7. Similarly, the strategy π2m+1(·|x) of step 3 is such that

J̃m = inf
ψ∈Π2(x)

[
−h(x) + Lπ

1
m,ψh̃m(x)

]
= −h(x) + Lπ

1
m,π

2
m+1 h̃m(x).

2. Proposition 5.1 gives that −h is µπ1,π2–integrable.

3. Lemma 7.3 can be invoked to ensure the compactness of Π1(x). Thus Theorem A.2 (with V1 × V2 replaced
by Π1(x)×Π2(x)) allows us to extend [52, Theorem 3.2] to the context of randomized strategies. These steps
enable us to guarantee the existence of J̃m, a function h̃m in C2(Rn)∩Bw(Rn), andϕ inΠ1(x), that maximizes
(7.8).

4. Assumption 2.12, Lemma 7.3 and Theorem A.2 (with Π2(x) in lieu of V2) allow the extension of [52, Theorem
3.2] that ensures that, for hm given, there exists π2(·|x) ∈ Π2(x) that minimizes (7.9).

These remarks, together with Lemma 6.5 and Theorem 6.7 give that the PIA for the bias game is well–defined.

7.2 Overtaking optimality

In this section we introduce the overtaking optimality criterion and show some relations between this criterion
and bias optimality.

Definition 7.8. A pair of strategies
(
π1∗, π

2
∗
)
∈ Π1 × Π2 is said to be an overtaking equilibrium in the class Π1 × Π2 if

for each
(
π1, π2

)
∈ Π1 × Π2 and x ∈ Rn we have

lim inf
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1, π2∗

)]
≥ 0 (7.14)
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and
lim sup
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1∗, π

2
)]
≤ 0. (7.15)

The set of pairs of overtaking equilibria is denoted by
(
Π1 × Π2

)
oe

.

Remark 7.9. If (π1, π2) is an overtaking equilibrium in Π1 × Π2, then it is an average payoff equilibrium. To see this, it
suffices to compare the definitions of lim inf, in (7.14), and lim sup, in (7.15), with expressions (5.2), (5.6), and (5.10).

By Theorem A.1 and the definition in (5.1), we can write JT
(
x, π1, π2

)
as follows

JT
(
x, π1, π2

)
= T · J

(
π1, π2

)
+ hπ1,π2(x) − Eπ

1,π2

x hπ1,π2 (x(T)) (7.16)

for every
(
π1, π2

)
in
(
Π1 × Π2

)
ae

.

Theorem 7.10. If a pair of strategies
(
π1∗, π

2
∗
)

is an overtaking equilibrium in Π1 × Π2, then it is a bias equilibrium.

Proof. Let
(
π1∗, π

2
∗
)
∈ Π1 × Π2 be a pair of overtaking optimal strategies. Then by the Remark 7.9, we have that(

π1∗, π
2
∗
)
∈
(
Π1 × Π2

)
ae

. Then, by using (7.16), we obtain

JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1, π2∗

)
= hπ1∗,π2∗ (x) − hπ1,π2∗ (x) + Eπ

1
∗,π

2
∗

x hπ1∗,π2∗ (x(T)) − Eπ
1,π2∗
x hπ1,π2∗ (x(T)), (7.17)

for each π1 ∈ Π1(x) (recall the definition of Π1(x) and Π2(x) in (7.5)–(7.6)). Equation (7.17), along with (2.13), (6.9)
and (7.14), yields

lim inf
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1, π2∗

)]
= hπ1∗,π2∗ (x) − hπ1,π2∗ (x) ≥ 0. (7.18)

Similar arguments show that for all π2 ∈ Π2(x),

lim sup
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1∗, π

2
)]

= hπ1∗,π2∗ (x) − hπ1∗,π2(x) ≤ 0. (7.19)

Inequalities (7.18) and (7.19) yield condition (7.1) in Definition 7.1 for all
(
π1∗, π

2
∗
)
∈
(
Π1 × Π2

)
ae

. Hence the pair(
π1∗, π

2
∗
)

is a bias equilibrium.

Theorem 7.11. Suppose that a pair of strategies
(
π1∗, π

2
∗
)
∈ Π1×Π2 is a bias equilibrium, then it is an overtaking equilibrium

in the class
(
Π1 × Π2

)
ae

.

Proof. Let
(
π1, π2

)
in
(
Π1 × Π2

)
ae

be a pair of average optimal strategies and let
(
π1∗, π

2
∗
)
∈
(
Π1 × Π2

)
bias

. Then(
π1∗, π

2
∗
)

is in
(
Π1 × Π2

)
ae

. Using (7.16) yields (7.17) again. Hence, (2.13), (6.9) and (7.1) give

lim inf
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1, π2∗

)]
≥ 0.

Similarly
lim sup
T→∞

[
JT
(
x, π1∗, π

2
∗
)
− JT

(
x, π1∗, π

2
)]
≤ 0

Hence
(
π1∗, π

2
∗
)

is an overtaking equilibrium in the class
(
Π1 × Π2

)
ae

of average payoff equilibria.

Remark 7.12. Theorem 7.10 shows that overtaking optimality implies bias optimality in the class Π1 × Π2 of stationary
strategies. On the other hand, Theorem 7.11 gives a partial converse; the results in [78] lead us to think that the full converse
holds only in the class

(
Π1 × Π2

)
ae

, but this remains an open problem. In contrast, overtaking and bias optimality are
equivalent in control (or single–player) problems in the class Π1×Π2 of stationary strategies; see, for instance, [52, Theorem
5.5].
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7.3 Concluding remarks

This chapter presents a unified analysis of bias and overtaking optimality for a general class of zero–sum SDGs.
Under suitable hypotheses such as uniform ellipticity in Assumption 2.1(b) and the uniformw–exponential ergod-
icity in (2.13), we have shown the existence and give characterizations of bias equilibria and their connection with
overtaking equilibria. Moreover, we provide an algorithm to find bias equilibria in terms of the so–called bias game.

Our characterizations follow a lexicographical type in the sense that, first, we identify the set of average payoff
equilibria, and then, within this set, we look for some special strategies. Finally, we show that overtaking equilib-
rium implies bias equilibrium (Theorem 7.10). However, the results in [78] lead us to believe that a partial converse
holds: bias equilibria are overtaking equilibria in the class of average payoff equilibria. This is an open issue.
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Chapter 8

Final remarks

In this thesis we have studied several infinite–horizon zero–sum games for a general class of Markov diffusion
processes. Our work begins with the study of two basic optimality criteria, namely, discounted payoff (in Chapter
4) and average payoff (in Chapters 5 and 6). We used an alternative method —with Theorem 3.4 in its core—
to prove the existence of value functions and saddle points under these two criteria, and we used Chapter 6
to propose an algorithm to characterize average payoff equilibria and game’s value for the corresponding SDG.
Moreover, we also gave conditions milder than those given in [43] to prove that the Poisson equation (6.5) has a
solution hπ1,π2 ∈ C2(Rn) ∩ Bw(Rn) (see Proposition 6.4).

In Chapter 4.2 we studied a special class of zero–sum SDGs under what we called random discounted payoff cri-
terion. We started by replacing the fixed parameter α > 0 by the continuous–time Markov chain α(·) and we used
this process to index the SDE (4.26) so that we had a Markov–modulated diffusion. We proved the existence of
saddle points and value functions as we did in Section 4.1. A major difference between our approach and that of
[90, 91] is that we consider that the switching parameter is present in both: the diffusion itself, and the discount fac-
tor. Actually, our Theorem 4.19 is suitable for the problem we present here, as well as for the examples presented
by Song, Yin and Zhang in their works.

We also provided a proof for the existence of overtaking optimal policies and gave two characterizations of
these policies. In particular, we related the concept of overtaking optimality with the concept of bias optimality.
We also presented a modified version of the PIA that looks for bias optimal strategies in

(
Π1 × Π2

)
ao

the set of
average optimal strategies.

Nevertheless, there are several research lines in the theory of SDGs that our work leaves open. For instance:

1. Solving a non–stationary version of the discounted payoff criterion and proving an analogue of Theorem
3.4 for this problem. This would imply to work with Cauchy problems of parabolic type, thus applying the
results in Kolokoltsov [58, 59], Reed and Simon [84], and Ladyzhenskaya and Uraltseva [65] to the context of
our interest.

2. Finding a suitable PIA for the discounted payoff criterion.

3. Propose appropriate applications, in economics, environmental or actuarial sciences, of our results on (i) the
random discounted payoff criterion (we think that the examples of [90, 91] make a fair point of departure);
and (ii) the bias and overtaking equilibria (an extension to the work of Kawaguchi and Morimoto [56] seems
appealing enough in this instance).

Our work is also a collection of applications of the powerful Theorem 3.4 and within that approach lies the key to
a possible extension of our results: discounted and ergodic payoff criteria for nonzero–sum SDGs.

We will devote our future efforts to finding answers in these and other related topics.
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Appendix A

Frequently used results

This Appendix presents four crucial results that are repeatedly quoted along our work.

For our first two results,Ω is a bounded subset of Rn,
(
π1, π2

)
∈ Π1×Π2, h ∈ W2,p(Ω), and x(·) = {x(t) : t ≥ 0}

is an almost surely strong solution to

dx(t) = b
(
x(t), π1, π2

)
dt+ σ (x(t))dW(t)

with initial condition x(0) = x, where b : Rn × Π1 × Π2 → Rn and σ : Rn → Rn×m are given functions, and W(·)
is an m–dimensional Wiener process. We also assume that Lπ1,π2h(·) is the infinitesimal generator of x(·); and is
given by

Lπ
1,π2h(x) :=

〈
∇h(x), b

(
x, π1, π2

)〉
+
1

2
Tr [[Hh(x)] · a(x)]

=

n∑
i=1

bi
(
x, π1, π2

)
∂xih(x) +

1

2

n∑
i,j=1

aij(x)∂
2
xixj

h(x),

with a(·) as in Assumption 2.1(c).

For the sake of completeness, we list first Dynkin’s formula. See [57, Corollary 6.5].

Theorem A.1. Let τ be the first exit time ofΩ (cf. (4.13)). If Assumption 2.1 and Remark 2.5 hold, then

Eπ
1,π2

x [h (x(τ))] = h(x) + Eπ
1,π2

x

[∫τ
0

Lπ
1,π2h(x(t))dt

]
.

The next result is a tuned version of [72, Theorem 2.1]. Let V` be the space of probability measures on U`

endowed with the topology of weak convergence (` = 1, 2).

Theorem A.2. If Assumption 2.1, Remark 2.5, Assumptions 2.6 and 2.12, and Remark 2.13 hold, then, there exists a pair(
π1∗, π

2
∗
)
∈ Π1 × Π2 such that

r
(
x, π1∗, π

2
)
+ Lπ

1
∗,π

2

h(x) = sup
ϕ∈V1

{
r
(
x,ϕ, π2

)
+ Lϕ,π

2

h(x)
}
, and

r
(
x, π1, π2∗

)
+ Lπ

1,π2∗h(x) = inf
ψ∈V2

{
r
(
x, π1, ψ

)
+ Lπ

1,ψh(x)
}
.

Now let Ω be as in Chapter 3, that is, a bounded, open and connected subset of Rn. Assume that the space
V1 × V2 has a single element, namely (ϕ,ψ). Recall as well definitions (3.1) and (3.5).

For every x ∈ Rn, α > 0, and h in C2(Rn) let

b̂ (x,ϕ,ψ, h, α) := 〈∇h(x), b (x,ϕ,ψ)〉− αh(x) + r (x,ϕ,ψ) , (A.1)
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with b as in (2.5) and r as in (2.21). We also recall

L̂ϕ,ψα h(x) := b̂ (x,ϕ,ψ, h, α) +
1

2
Tr [[Hh(x)]a(x)] , (A.2)

with a as in Assumption 2.1(b).

We now borrow a version of Theorem 9.11 of [36] that is appropriate to our context.

Theorem A.3. Let h ∈ W2,p(Ω) be a solution of L̂ϕ,ψα h = ξ, with ξ ∈ Lp(Ω), and L̂ϕ,ψα as in (A.2). Suppose that a
satisfies Assumption 2.1, and that b and r are as in Remarks 2.5 and 2.13, respectively. Then, for any open connected subset
Ω ′ ofΩ, there exists a constant C0 that depends on n, p, α,Ω andΩ ′ such that:

‖h‖W2,p(Ω ′) ≤ C0
(
‖h‖Lp(Ω) + ‖ξ− r(·, ϕ,ψ)‖Lp(Ω)

)
.

Observe that r(·, ϕ,ψ) is in Lp(Ω) wheneverΩ is a bounded set. Indeed, by Assumption 2.12(b), we have that(∫
Ω

|r(x,ϕ,ψ)|pdx

)1/p
≤M

(∫
Ω

(w(x))pdx

)1/p
≤M sup

x∈Ω̄
w(x)|Ω̄| <∞,

where |Ω̄| denotes the volume of the closure ofΩ.

Our final result ensures the convergence in the space of weighted functions Bw(Ω) of certain sequences.

Lemma A.4. Let Bw(Ω) be the space in Definition 2.8 (with Ω rather than Rn). In addition, consider a sequence {vm} of
functions in Bw(Ω), and suppose that there exists a real–valued function v on Ω such that vm → v uniformly. Then v is in
Bw(Ω).

Proof. By the triangle inequality and the uniform convergence of {vm} to v, for each ε > 0, there exists a natural
number Nε such that, for allm ≥ Nε,

|v(x)|− |vm(x)| ≤ |v(x) − vm(x)| < ε for all x ∈ Ω.

This yields

|v(x)| < ε+ |vm(x)|
≤ ε+ ‖vm‖ww(x) for all x ∈ Ω.

Since w ≥ 1, the claim follows.
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Appendix B

Proof of Theorem 3.4

This Appendix requires definitions (3.1) and (3.2) (or (A.1) and (A.2)). We will also require the definition of Ω in
Section 3.

B.1 Proof of Theorem 3.4(i)

We first show that there exist a function h in W2,p(Ω) and a subsequence {mk} ⊂ {1, 2, ...} such that, as k → ∞,
hmk → hweakly inW2,p(Ω) and strongly inW1,p(Ω). Namely, sinceW2,p(Ω) is reflexive [1, Theorem 3.5], then,
by the Banach–Alaouglu Theorem [1, Theorem 1.17], the ball

H :=
{
h ∈ W2,p(Ω) : ‖h‖W2,p(Ω) ≤M1

}
(B.1)

is weakly sequentially compact. Hence, the compactness of the imbeddingW2,p(Ω) ↪→ W1,p(Ω) [1, Theorem 6.2
part II] implies that H is precompact inW1,p(Ω), that is, there exist a function h ∈ W2,p(Ω) and a subsequence
{hmk } ≡ {hm} ⊂ H such that

hm → h weakly in W2,p(Ω) and strongly in W1,p(Ω). (B.2)

The second step is to show that, asm→∞,

sup
ϕ∈V1

inf
ψ∈V2

b̂(·, ϕ,ψ, hm, αm)→ sup
ϕ∈V1

inf
ψ∈V2

b̂(·, ϕ,ψ, h, α) in Lp(Ω). (B.3)

To this end, recall (A.1) and note that, given x ∈ Ω, two functions h ∈ W2,p(Ω) and hm ∈ H, and a pair of positive
numbers α and αm, the following holds.∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂ (x,ϕ,ψ, h, α) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm)

∣∣∣∣∣
p

≤ sup
(ϕ,ψ)∈V1×V2

∣∣b̂ (x,ϕ,ψ, h, α) − b̂ (x,ϕ,ψ, hm, αm)
∣∣p

= sup
(ϕ,ψ)∈V1×V2

|〈(∇h−∇hm) (x), b(x,ϕ,ψ)〉− (αh− αmhm) (x)|
p

≤

[
|(∇h−∇hm) (x)| sup

(ϕ,ψ)∈V1×V2
|b(x,ϕ,ψ)|+ |(αh− αmhm) (x)|

]p

≤

[
2max

{
|(∇h−∇hm) (x)| sup

(ϕ,ψ)∈V1×V2
|b(x,ϕ,ψ)| , |(αh− αmhm) (x)|

}]p
≤ 2p

[
(|(∇h−∇hm) (x)|C(Ω))

p
+ |(αh− αmhm) (x)|

p]
. (B.4)
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The existence of the constant C(Ω) follows from the boundedness of the setΩ and from Remark 2.5. Hence∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, h, α) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm)

∣∣∣∣∣
p

≤ 2p [|(∇h−∇hm) (x)|C(Ω)]
p
+ 2p [|h(x)| |α− αm|+ |αm| |(h− hm) (x)|]

p

≤ 2p [|(∇h−∇hm) (x)|C(Ω)]
p
+ 2p [2max {|h(x)| |α− αm| , |αm| |(h− hm) (x)|}]

p

≤ 2p [|(∇h−∇hm) (x)|C(Ω)]
p
+ 4p

(
|h(x)|

p
|α− αm|

p
+ |αm|

p
|(h− hm) (x)|

p)
≤ [2C(Ω)]

p
np
[

max
1≤i≤n

|(∂xih− ∂xihm) (x)|

]p
+ 4p

(
|h(x)|

p
|α− αm|

p
+ |αm|

p
|(h− hm) (x)|

p)
≤ [2C(Ω)n]

p

[
max
1≤i≤n

|(∂xih− ∂xihm) (x)|

]p
+ 4p

(
|h(x)|

p
|α− αm|

p
+ |αm|

p
|(h− hm) (x)|

p)
. (B.5)

It follows from (B.5) that, for hm and h as in (B.2) and x ∈ Ω,∥∥∥∥∥ sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, h, α) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, hm, αm)

∥∥∥∥∥
p

Lp(ΩT )
≤ [2C(Ω)n]

p
n max
1≤i≤n

‖∂xihm − ∂xih‖
p
Lp(ΩT )

+
(
4 ‖h‖Lp(ΩT )

)p
|αm − α|

p
+ (4αm)p ‖hm − h‖pLp(ΩT ) . (B.6)

Hence, as m → ∞, it follows from (B.2) and hypothesis (d) that the right–hand side of (B.6) tends to zero; thus
proving (B.3).

The existence of the constant C(Ω) in (B.4) also gives that for each l in L
p
p−1 (Ω),

1

2

∣∣∣∣∫
Ω

(l · Tr [aH (hm − h)]) (x)dx

∣∣∣∣ ≤ n2 [C(Ω)]
2

2

n∑
i,j=1

∣∣∣∣∫
Ω

(
l · ∂2xixj (hm − h)

)
(x)dx

∣∣∣∣ . (B.7)

Thus the weak convergence of {hm} to h inW2,p(Ω) yields that the right–hand side of (B.7) converges to zero as
m→∞. Combining (B.3), (B.7), and hypothesis (c) to see that for every l in L

p
p−1 (Ω),∫

Ω

(
l ·
[
L̂αh− ξ

])
(x)dx = lim

m→∞
∫
Ω

(
l ·
[
L̂αmhm − ξm

])
(x)dx = 0.

This fact, along with Theorem 2.10 in [66], implies (3.4), i.e.

L̂αh = ξ in Ω,

which completes the proof of part (i).

B.2 Proof of Theorem 3.4 (ii)

Let us introduce the following auxiliary results.

Lemma B.1. [36, Theorem 9.19] Let h ∈ W2,p(Ω) be a solution of the equation L̂αh = ξ inΩ. If the coefficients of L̂α and
ξ belong to C0,β(Ω), with β ∈]0, 1[, then h is in C2,β(Ω).

Lemma B.2. Consider a sequence of functions {fm} in C0,η(Ω), with 0 < η < 1. Suppose the existence of

• a uniform bound H∗ for the sequence {fm} in C0,η(Ω), i.e., form = 1, 2, ...

‖fm‖C0,η(ΩT ) ≤ H
∗, (B.8)

• a real valued function f on Ω, such that fm converges uniformly to f on Ω; i.e., for every ε > 0 there exists M(ε) ∈
{1, 2, ...} such that, for allm ≥M(ε) and all x ∈ Ω,

|fm(x) − f(x)| < ε. (B.9)
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Then f belongs to C0,η(Ω).

Proof. Consider fm ∈ C0,η(Ω) and observe that, by (B.8) for all x, y ∈ Ω,

|f(x) − f(y)| ≤ |f(x) − fm(x)|+ |fm(x) − fm(y)|+ |fm(y) − f(y)|
≤ sup

x∈Ω
|f(x) − fm(x)|+H∗|x− y|η + sup

y∈Ω
|fm(y) − f(y)|.

Therefore, by (B.9), lettingm→∞, |f(x) − f(y)| ≤ H∗|x− y|η for all x, y ∈ Ω. Hence f is in C0,η(Ω).

To prove part (ii) of Theorem 3.4, we need to verify first that, if p > n, then hmk → h in C1,η(Ω̄) for all η < 1− n
p

.

By the Rellich–Kondrachov Theorem [1, Theorem 6.2, Part III], the imbeddingW2,p(Ω) ↪→ C1,η(Ω̄), for 0 ≤ η <
1 − n

p
is compact; hence, it is also continuous. This implies that the set H in (B.1) is relatively compact in C1,η(Ω̄).

Recall now that, from the proof of part (i),H is weakly sequentially compact. Hence, there exist h ∈ W2,p(Ω) and
a subsequence {hmk } ≡ {hm} ⊂ H such that hm converges weakly to h inW2,p(Ω) and strongly in C1,η(Ω̄).

To complete the proof of part (ii), suppose that ξ is in C0,β(Ω) with β ≤ η < 1 − n
p

. We wish to show that the
limit function h is in C2,β(Ω). To do this, we will proceed in several steps.

First we will show that, for eachm ≥ 1

sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, hm, αm) is in C0,η(Ω), (B.10)

and that the sequence of functions

sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, hm, αm) is uniformly bounded on C0,η(Ω). (B.11)

Afterwards we will show that

sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, hm, αm)→ sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, h, α) uniformly on Ω. (B.12)

Then we will invoke Lemma B.2 to conclude that

sup
ϕ∈V1

inf
ψ∈V2

b̂ (·, ϕ,ψ, h, α) is in C0,η(Ω). (B.13)

Since we assumed that ξ is in C0,β(Ω), we will see that

1

2
Tr [aHh] = ξ− sup

ϕ∈V1
inf
ψ∈V2

b̂ (·, ϕ,ψ, h, α) is in C0,β(Ω). (B.14)

Hence part (ii) will follow from Lemma B.1.

Let us proceed with the completion of the proof.

Recall the definition ofH in (B.1). To prove that (B.10) and (B.11) hold, observe first that for all x, y ∈ Ω, αm > 0
and hm ∈ H,∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂(x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂(y,ϕ,ψ, hm, αm)

∣∣∣∣∣
≤ sup

(ϕ,ψ)∈V1×V2

∣∣b̂(x,ϕ,ψ, hm, αm) − b̂(y,ϕ,ψ, hm, αm)
∣∣

= sup
(ϕ,ψ)∈V1×V2

∣∣〈∇hm(x) −∇hm(y), b (x,ϕ,ψ))〉+ 〈∇hm(y), b (x,ϕ,ψ) − b (y,ϕ,ψ)〉
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−αm [hm(x) − hm(y)] + [r (x,ϕ,ψ) − r (y,ϕ,ψ)]
∣∣

≤ sup
(ϕ,ψ)∈V1×V2

|b (x,ϕ,ψ)| |∇hm(x) −∇hm(y)|+ sup
(ϕ,ψ)∈V1×V2

|b (x,ϕ,ψ) − b (y,ϕ,ψ)| |∇hm(y)|

+αm |hm(x) − hm(y)|+ sup
(ϕ,ψ)∈V1×V2

|r (x,ϕ,ψ) − r (y,ϕ,ψ)|

≤ n max
1≤i≤n

|∂xihm(x) − ∂xihm(y)| C̃(Ω̄) + |∇hm(y)|C1|x− y|+ αm |hm(x) − hm(y)|+ C(R)|x− y|,

where C̃(Ω̄), C1 and C(R) are the constants in the Remarks 2.5 and 2.13. In this case, R stands for the radius of a
ball BR such thatΩ ⊂ BR. Hence∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣
≤ n ‖hm‖C1,η(Ω) |x− y|

ηC̃(Ω̄) + |∇hm(y)|C1|x− y|+ αm ‖hm‖C1,η(Ω) |x− y|
η + C(R)|x− y|. (B.15)

Now note that, by the continuity of the imbeddingW2,p(Ω) ↪→ C1,η(Ω̄), there exists a so–called imbedding constant
M2 such that

max

{
sup
x∈Ω̄

|hm(x)| , max
1≤i≤n

sup
x∈Ω̄

|∂xihm(x)|

}
≤ ‖hm‖C1,η(Ω̄)

≤ M2 ‖hm‖W2,p(Ω)

≤ M2M1 (B.16)

withM1 as in the hypothesis (b). Therefore, combining (B.15) with (B.16) yields∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣
≤ M2M1|x− y|

ηnC̃(Ω̄) + C1|x− y|nM2M1 + αmM2M1|x− y|
η + C(R)|x− y|. (B.17)

Now, if |x− y| < 1, then (B.17) yields∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣ ≤ H(1)
m |x− y|η,

where H(1)
m :=M1M2nC̃(Ω̄) + C1nM1M2 + αmM1M2 + C(R). Observe that, since the sequence {αm} converges,

there exist a constant H∗1 such that H∗1 ≥ H
(1)
m for allm ∈ {1, 2, ...}, and so∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣ ≤ H∗1|x− y|η. (B.18)

Otherwise, if |x− y| ≥ 1, let K∗ := maxx,y∈Ω̄ |x− y|. Hence, from (B.17) again,∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣ ≤ H(2)
m |x− y|η,

where H(2)
m := M1M2nC̃(Ω̄) + C1K

∗nM1M2 + αmM1M2 + C(R)K
∗. Yet, by the boundedness of the convergent

sequence {αm}, there exists a constant H∗2 such that H∗2 ≥ H
(2)
m for allm ∈ {1, 2, ...}, and∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (y,ϕ,ψ, hm, αm)

∣∣∣∣∣ ≤ H∗2|x− y|η. (B.19)

From (B.18) and (B.19) we obtain (B.10) and (B.11).
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We will now see that (B.12) holds. Let hm and h be as in (B.2) and αm → α as in hypothesis (d). Then, by (A.1),

sup
x∈Ω̄

∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, hm, αm) − sup
ϕ∈V1

inf
ψ∈V2

b̂ (x,ϕ,ψ, h, α)

∣∣∣∣∣
≤ sup

x∈Ω̄
sup

(ϕ,ψ)∈V1×V2

∣∣b̂ (x,ϕ,ψ, hm, αm) − b̂ (x,ϕ,ψ, h, α)
∣∣

≤ C̃(Ω̄)

n∑
i=1

sup
x∈Ω̄

|(∂xihm − ∂hxi) (x)|+ sup
x∈Ω̄

|hm(x)| · |αm − α|+ α sup
x∈Ω̄

|(hm − h) (x)| . (B.20)

Moreover, by (B.16) we have supx∈Ω̄ |hm(x)| ≤ M1M2. Consequently, since hm converges to h in C1,β(Ω̄), the
right hand side of (B.20) tends to zero asm→∞. This gives (B.12).

Since (B.10) and (B.12) hold, we may use Lemma B.2 to assert that (B.13) holds.

To conclude the proof of (ii), observe that a direct calculation yields (B.14), and so Lemma B.1 completes the
proof of part (ii). Hence, the proof of Theorem 3.4 is now complete. �

B.3 Notes on the proof of Theorem 4.19

The proof of Theorem 4.19 resembles that of Theorem 3.4. We will state a few remarks on the details. Recall the
definition of b̂ given in (4.37), that is

b̂
(
x, α,ϕ,ψ, h1, ..., hN

)
:=
〈
∇hi(x), b (x, α,ϕ,ψ)

〉
− αhi(x) + r (x, α,ϕ,ψ) +

N∑
j=1

qijh
j(x).

Our first step is to show the existence of a subsequence
{
hjmk

}
of
{
hjm

}
m

, whose convergence to hj is weak in

W2,p(Ω) and strong inW1,p(Ω) for j = 1, ...,N.

To do this, we repeat, for j = 1, ...,N, the argument that led us to (B.2). Then, it is necessary to prove that, as
m→∞,

sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, ·, ϕ,ψ, h1m, ..., hNm

)→ sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, ·, ϕ,ψ, h1, ..., hN

)
(B.21)

in Lp(Ω). Observe that (B.4) changes to∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1
m, ..., h

N
m

)
− sup
ϕ∈V1

inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1, ..., hN
)∣∣∣∣∣
p

≤ sup
(ϕ,ψ)∈V1×V2

∣∣b̂ (x, αi, ϕ,ψ, h1, ..., hN)− b̂ (x, αi, ϕ,ψ, h1m, ..., hNm)∣∣p
≤ sup

(ϕ,ψ)∈V1×V2

∣∣∣∣∣∣〈(∇him −∇him
)
(x), b(x, αi, ϕ,ψ)

〉
+

N∑
j=1

(
hjm(x) − hj(x)

)
qij

∣∣∣∣∣∣
p

≤

∣∣(∇him −∇him
)
(x)
∣∣ C̃(Ω̄) +

∣∣∣∣∣∣
N∑
j=1

(
hjm(x) − hj(x)

)
qij

∣∣∣∣∣∣
p

≤

∣∣(∇him −∇him
)
(x)
∣∣ C̃(Ω̄) +

∣∣∣∣∣∣ max
1≤j≤N

(
hjm(x) − hj(x)

) N∑
j=1

qij

∣∣∣∣∣∣
p

But, by the conservativeness of the chain α(·), we have that
∑N
j=1 qij = 0. Hence,∣∣∣∣∣ sup

ϕ∈V1
inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1
m, ..., h

N
m

)
− sup
ϕ∈V1

inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1, ..., hN
)∣∣∣∣∣
p
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≤
(∣∣(∇him −∇him

)
(x)
∣∣ C̃(Ω̄)

)p → 0 as m→∞.
Thus, using the same steps as (B.6), we prove (B.21).

The relation (B.21), an analogous inequality to (B.7), hypothesis (c) and [66, Theorem 2.10] yields (4.38). (See
the last paragraph of Section B.1.)

To prove part (ii), we need to verify first that, if p > n, then hjmk → hj in C1,η(Ω) for 0 ≤ η < 1 − n
p

and
j = 1, ...,N. This is essentially the same we did in the first part of Section B.2.

Afterwards, we assume that ξ ∈ C0,β(Ω) with β ≤ η < 1 − n
p

, and show that the corresponding relations to
(B.10) and (B.11) (in the present context) hold, that is:

sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, αi, ϕ,ψ, h1m, ..., hNm

)
is in C0,η(Ω), (B.22)

and that the sequence of functions

sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, αi, ϕ,ψ, h1m, ...hNm

)
is uniformly bounded on C0,η(Ω). (B.23)

To this end, it is necessary to obtain the following analogous of (B.15).∣∣∣∣∣ sup
ϕ∈V1

inf
ψ∈V2

b̂
(
x, αi, ϕ,ψ, h

1
m, ..., h

N
m

)
− sup
ϕ∈V1

inf
ψ∈V2

b̂
(
y, αi, ϕ,ψ, h

1
m, ..., h

N
m

)∣∣∣∣∣
≤ n

∥∥him∥∥C1,η(Ω̄)
|x− y|ηC̃(Ω̄) +

∣∣∇him(x)
∣∣C1|x− y|+ αi ∥∥him∥∥C1,η(Ω̄)

|x− y|η + C(R)|x− y|.

This relation can be taken as the point of departure to argue as in (B.16)–(B.19), and therefore, obtain (B.22) and
(B.23).

The convergence of hj
mi
k

to hj, for j = 1, ...,N, yields

sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, αi, ϕ,ψ, h1m, ..., hNm

)→ sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, αi, ϕ,ψ, h1, ..., hN

)
uniformly on Ω,

and by Lemma B.2 we deduce that

sup
ϕ∈V1

inf
ψ∈V2

b̂
(
·, αi, ϕ,ψ, h1, ..., hN

)
is in C0,η(Ω).

This last assertion, combined with an analogous relation to (B.14), and Lemma B.1 yield part (ii).
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